Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 13-14
128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe3O4 nanocomposite

ORCID Icon, , &
Pages 1146-1167 | Received 06 Oct 2022, Accepted 12 Dec 2022, Published online: 05 Jan 2023

References

  • Kılıç, Z. The Importance of Water and Conscious Use of Water. IJH 2020, 4, 239–241. DOI: 10.15406/ijh.2020.04.00250.
  • Falinski, M. M.; Turley, R. S.; Kidd, J.; Lounsbury, A. W.; Lanzarini-Lopes, M.; Backhaus, A.; Rudel, H. E.; Lane, M. K. M.; Fausey, C. L.; Barrios, A. C.; et al. Doing Nano-Enabled Water Treatment Right: sustainability Considerations from Design and Research through Development and Implementation. Environ. Sci.: Nano 2020, 11, 1–24.
  • WHO. 2021. Protection of the Human Environment. https://www.afro.who.int/health-topics/water (accessed Jun 27, 2022).
  • Ohanmu, E. O.; Bako, S. P.; Ohanmu, E.; Ohanmu, O. O. Environmental Implications, Properties and Attributes of Crude Oil in the Oil-Producing States of Nigeria. Ecologi 2018, 9, 1–9. DOI: 10.3923/ecologia.2019.1.9.
  • Khatoon, K.; Malik, A. Cyto-Genotoxic Potential of Petroleum Refinery Wastewater Mixed with Domestic Sewage Used for Irrigation of Food Crops in the Vicinity of an Oil Refinery. Heliyon 2021, 7, e08116-15. DOI: 10.1016/j.heliyon.2021.e08116.
  • Adeola, A. O.; Akingboye, A. S.; Ore, O. T.; Oluwajana, O. A.; Adewole, A. H.; Olawade, A. D. B.; Ogunyele, A. C. Crude Oil Exploration in Africa: socio-Economic Implications, Environmental Impacts, and Mitigation Strategies. Environ. Syst. Decis. 2022, 42, 26–50.
  • Makeen, Y. M.; Shan, X.; Lawal, M.; Ayinla, H. A.; Su, S.; Yelwa, N. A.; Liang, Y.; Ayuk, N. E.; Du, X. Reservoir Quality and Its Controlling Diagenetic Factors in the Bentiu Formation, Northeastern Muglad Basin, Sudan. Sci. Rep. 2021, 11, 1–13. DOI: 10.1038/s41598-021-97994-x.
  • Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691-20. DOI: 10.1016/j.heliyon.2020.e04691.
  • Moharbi, S. S.; Geetha, M.; Devi, B. M.; Sangeetha, S. J. Studies on the Removal of Copper Ions from Industrial Efuent by Azadirachta Indica Powder. Appl. Water Sci. 2020, 10, 1–10. DOI: 10.1007/s13201-019-1100-z.
  • Engwa, G. A.; Ferdinand, P. U.; Nwalo, F. N.; Unachukwu, M. N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World – New Tricks for an Old Dog?; Karcioglu, O., Arslan, B., Eds.; Intech Open: London, UK, 2019. DOI: 10.5772/intechopen.82511.
  • Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M. R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: mercury Lead Chromium Cadmium and Arsenic. Front. Pharmacol. 2021, 12, 1–19. DOI: 10.3389/fphar.2021.643972.
  • Narayanan, C. M.; Narayan, V. Biological Wastewater Treatment and Bioreactor Design: A Review. Sustain. Environ. Res. 2019, 29, 1–17. DOI: 10.1186/s42834-019-0036-1.
  • Li, M.; Hu, K.; Wang, J. Study on Optimal Conditions of Flocculation in Deinking Wastewater Treatment. J. Eng. Appl. Sci. 2021, 35, 1–14.
  • Qasem, N. A. A.; Mohammed, R. H.; Lawal, D. U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. Npj Clean Water 2021, 4, 1–15. DOI: 10.1038/s41545-021-00127-0.
  • Zhao, Q.; Xu, T.; Song, X.; Nie, S.; Choi, S. E.; Chuanling, S. I. Preparation and Application in Water Treatment of Magnetic Biochar. Front. Bioeng. Biotechnol. 2021, 9, 2296–4185.
  • Kumar, J.; Joshi, H.; Malyan, S. K. Removal of Copper, Nickel, and Zinc Ions from an Aqueous Solution through Electrochemical and Nanofifiltration Membrane Processes. Appl. Sci. 2022, 12, 1–15.
  • El-Batouti, M.; Al-Harby, N. F.; Elewa, M. M. A. Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. Water 2021, 13, 3241–3262. DOI: 10.3390/w13223241.
  • Hussain, S. T.; Ali, S. A. K. Removal of Heavy Metal by Ion Exchange Using Bentonite Clay. J. Ecol. Eng. 2021, 22, 104–111. DOI: 10.12911/22998993/128865.
  • Sylwan, I.; Thorin, E. Removal of Heavy Metals during Primary Treatment of Municipal Wastewater and Possibilities of Enhanced Removal: A Review. Water 2021, 13, 1121. DOI: 10.3390/w13081121.
  • Iconaru, S. L.; Guégan, R.; Popa, C. L.; Motelica-Heino, M.; Ciobanu, C. S.; Predoi, D. Magnetite (Fe3O4) Nanoparticles as Adsorbents for as and Cu Removal. Appl. Clay Sci. 2016, 134, 128–135. DOI: 10.1016/j.clay.2016.08.019.
  • Crini, G.; Lichtfouse, E.; Wilson, L. D.; Morin-Crini, N. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2018, 17, 1–19.
  • Shaba, E. Y.; Jacob, J. O.; Tijani, J. O.; Suleiman, M. A. T. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment. Appl. Water Sci. 2021, 11, 1–48. DOI: 10.1007/s13201-021-01370-z.
  • Hezami, L.; Modwi, A.; Ghiloufi, I.; Taha, K. K.; Bououdina, M.; ElJery, A.; El, L.; Mir, L. Effect of Aluminum Loading on Structural and Morphological Characteristics of ZnO Nanoparticles for Heavy Metal Ion Elimination. Environ. Sci. Pollut. Res. 2020, 27, 3086–3099. DOI: 10.1007/s11356-019-07279-0.
  • Dhiman, V.; Kondal, N. ZnO Nanoadsorbents: A Potent Material for Removal of Heavy Metal Ions from Wastewater. Colloid Interface Sci. Commun. 2021, 14, 1–26.
  • Leiva, E.; Tapia, C.; Rodríguez, C. Highly Efficient Removal of Cu(II) Ions from Acidic Aqueous Solution Using ZnO Nanoparticles as nano-Adsorbents. Water 2021, 13, 2960. DOI: 10.3390/w13212960.
  • Stoian, O.; Covaliu, C. I.; Paraschiv, G.; Catrina, G. A.; Nit, M. E.; Matei, S. S.; Biri, S. S.; Tudor, P. Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater. Materials 2021, 14, 1–11.
  • Padmavathy, K. M.; Madhu, G.; Haseena, P. A. A. Study on the Effects of Ph, Adsorbent Dosage, Time, Initial Concentration and Adsorption Isotherm Study for the Removal of Hexavalent Chromium (Cr (IV)) from Wastewater by Magnetite Nanoparticles. Procedia Technol. 2016, 24, 585–594. DOI: 10.1016/j.protcy.2016.05.127.
  • Zhao, C.; Wang, X.; Zhang, S.; Sun, N.; Zhou, H.; Wang, G.; Zhao, H. Porous Carbon Nanosheets Functionalized with Fe3O4 Nanoparticles for Capacitive Removal of Heavy Metal Ions from Water. Environ. Sci.: Water Res. Technol. 2020, 6, 331–340.
  • Aguilar-Pérez, K. M.; Avilés-Castrillo, J. I.; Ruiz-Pulido, G.; Medina, D. I.; Parra-Saldivar, R.; Iqbal, H. M. N. Nanoadsorbents in Focus for the Remediation of Environmentally-Related Contaminants with Rising Toxicity Concerns. Sci. Total Environ. 2021, 779, 146465. DOI: 10.1016/j.scitotenv.2021.146465.
  • Ganapathe, L. S.; Mohamed, M. A.; Mohamad, Y.; Rozan, B.; Dilla, D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020, 6, 68. DOI: 10.3390/magnetochemistry6040068.
  • Raka, M.; Sirshendu, D. Removal of Copper (II) from Aqueous Solution Using Zinc Oxide Nanoparticle Impregnated Mixed Matrix Hollow Fiber Membrane. Environ. Technol. Innov. 2022, 26, 1–21.
  • Natrayan, L.; Rajalakshmi, R.; Singh, K. A.; Patil, P. P.; Veeman, D.; Paramasivam, P. Synthesis and Optimization of Cr (VI) Removal from Aqueous Solution by Activated Carbon with Magnetic Fe3O4 Nanoparticles by Response Surface Methodology. Adsorp. Sci. Technol. 2022, 2022, 1–9. DOI: 10.1155/2022/9366899.
  • Gómez-Aguilar, D. L.; Esteban-Muñoz, J. A.; Rodríguez-Miranda, J. P.; Baracaldo-Guzmán, D.; Salcedo-Parra, O. J. Desorption of Coffee Pulp Used as an Adsorbent Material for Cr(III and VI) Ions in Synthetic Wastewater: A Preliminary Study. Molecules 2022, 27, 2170 1–16. DOI: 10.3390/molecules27072170.
  • Farahmandjou, M.; Soflaee, F. Synthesis of Iron Oxide Nanoparticles Using Borohydride Reduction. Int. J. Bio-Inorg. Nanomater. 2015, 3, 203–206.
  • Kumaresan, N.; Ramamurthi, K. Synthesis of ZnO/rGO Nanocomposites by Wet Impregnation Method for Photocatalytic Performance against RHB Dye and 4-Chlorophenol under UV Light Irradiation. J. Mater. Sci. Mater. Electron. 2022, 31, 30–39.
  • Edokpayi, O.; Osemwenkhae, O.; Ayodele, B. V.; Ossai, J.; Fadilat, S. A.; Ogbeide, S. E. Batch Adsorption Study of Methylene Blue in Aqueous Solution Using Activated Carbons from Rice Husk and Coconut Shell. J. Appl. Sci. Environ. Manage. 2018, 22, 631–635.
  • Shaba, E. Y.; Tijani, J. O.; Jacob, J. O.; Suleiman, M. A. T. Adsorptive Potential of ZnO/SiO2 Nanorods Prepared via the Sol–Gel Method for the Removal of Pb(II) and Cd(II) from Petroleum Refinery Wastewater. J. Chem. Technol. Biotechnol. 2022, 8, 1–22.
  • Kalam, S.; Abu-Khamsin, S. A.; Kamal, M. S.; Patil, S. Surfactant Adsorption Isotherms: A Review. Am. Chem. Soc. 2021, 6, 32342–32348.
  • Sharif, F.; Roberts, E. P. L. Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts 2020, 10, 263. DOI: 10.3390/catal10020263.
  • Haixi, T.; Li, H.; Lin, M.; Kegang, L. Preparation of a Pinoresinol Diglucoside Imprinted Polymer Using Metal Organic Frame as the Matrix for Extracting Target Compound from Eucommia Ulmoides. Sep. Sci. Technol. 2021, 15, 1–5.
  • Jasper, F. E.; Ajibola, V. O.; Onwuka, J. C. Nonlinear Regression Analysis of the Sorption of Crystal Violet and Methylene Blue from Aqueous Solutions onto an Agro-Waste Derived Activated Carbon. Appl. Water. Sci. 2020, 10, 1–11. DOI: 10.1007/s13201-020-01218-y.
  • Pholosi, A.; Naidoo, E. B.; Ofomaja, A. E. Intraparticle Diffusion of Cr (VI) through Biomass and Magnetite Coated Biomass: A Comparative Kinetic and Diffusion Study. South Af. J. Chem. Eng. 2020, 32, 39–55. DOI: 10.1016/j.sajce.2020.01.005.
  • Adeogun, A. I.; Balakrishnan, R. B. Kinetics Isothermal and Thermodynamics Studies of Electrocoagulation Removal of Basic Dye Rhodamine B from Aqueous Solution Using Steel Electrodes. Appl. Water Sci. 2017, 7, 1711–1723. DOI: 10.1007/s13201-015-0337-4.
  • Shrestha, B.; Wang, L.; Zhang, H.; Hung, C. Y.; Tang, L. Gold Nanoparticles Mediated Drug-Gene Combinational Therapy for Breast Cancer Treatment. IJN 2020, ume 15, 8109–8119. DOI: 10.2147/IJN.S258625.
  • Araújo, J.; Edgar, A.; Nobre, F. X.; Sousa, G. S.; Cavalcante, L. S.; Rita, M. S.; Souza, F. L.; Elias, M. J. M. Synthesis, Growth Mechanism, Optical Properties and Catalytic Activity of ZnO Microcrystals Obtained via Hydrothermal Processing. RSC Adv. 2017, 7, 24263–24281. DOI: 10.1039/C7RA03277C.
  • Diallo, A.; Ngom, B. D.; Park, E.; Maaza, M. Green Synthesis of ZnO Nanoparticles by Aspalathus Linearis: Structural & Optical Properties. J. Alloys Compd. 2015, 646, 425–430. DOI: 10.1016/j.jallcom.2015.05.242.
  • Ruíz-Baltazar, A.; Esparza, R.; Rosas, G.; Pérez, R. Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles. J. Nanomater. 2015, 2015, 1–8. DOI: 10.1155/2015/240948.
  • Abdelhamid, H. N.; Wu, H. F. Multifunctional Graphene Magnetic Nanosheet Decorated with Chitosan for Highly Sensitive Detection of Pathogenic Bacteria. J Mater. Chem. B 2013, 1, 3950–3961. DOI: 10.1039/c3tb20413h.
  • Gopal, J.; Abdelhamid, H. N.; Hua, P.-Y.; Wu, H. F. Chitosan Nanomagnets for Effective Extraction and Sensitive Mass Spectrometric Detection of Pathogenic Bacterial Endotoxin from Human Urine. J. Mater. Chem. B 2013, 1, 2463–2475. DOI: 10.1039/c3tb20079e.
  • Ulya, N. H.; Taufiq, A. S. Comparative Structural Properties of Nanosized ZnO/Fe3O4 Composites Prepared by Sonochemical and Sol-Gel Methods. IOP Conf. Ser.: Earth Environ. Sci. 2019, 276, 1–10.
  • Długosz, O.; Szostak, K.; Krupiński, M.; Banach, M. Synthesis of Fe3O4/ZnO Nanoparticles and Their Application for the Photodegradation of Anionic and Cationic Dyes. Int. J. Environ. Sci. Technol. 2021, 18, 561–574. DOI: 10.1007/s13762-020-02852-4.
  • Abdolmohammad-Zadeh, H.; Zamani, A.; Shamsi, Z. A Simple Magnetic Solid-Phase Extraction Method Based on Magnetite/Graphene Oxide Nanocomposite for Pre-Concentration and Determination of Melamine by High-Performance Liquid Chromatography. Environ. Sci. Pollut. Res. 2020, 27, 1–9.
  • Singh, P. K.; Gautam, A.; Verma, V.; Singh, P. M.; Shivapriya, S.; Shivalkar, A. K.; Sahoo, S.; Kumar, A. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol. Rep. 2020, 25, 1–11.
  • Singh, H.; Kumar, A.; Thakur, A.; Kumar, P.; Nguyen, V.-H.; Vo, D.-V. N.; Sharma, A.; Kumar, D. One-Pot Synthesis of magnetite-ZnO Nanocomposite and Its Photocatalytic Activity. Top. Catal. 2020, 63, 1097–1108.
  • Verbraeken, M. C.; Brandani, S. A Priori Predictions of Type I and Type V Isotherms by the Rigid Adsorbent Lattice Fluid. Adsorption 2020, 26, 989–1000. DOI: 10.1007/s10450-019-00174-7.
  • Aljameel, A. I.; Ali, M. K. Zinc Oxide Thin Films Preparation by Chemical Methods onto Si Substrate for Solar Cell Application. J. Non-Oxide Glas. 2021, 13, 21–29.
  • Marcos-Hernández, M.; Villagrán, D. Mesoporous Composite Nanomaterials for Dye Removal and Other Applications. Compos. Nanoadsorbents, Elsevier, Amsterdam, Netherlands, 2019, 265–293.
  • Li, X.; He, S.; Feng, C.; Zhu, Y.; Pang, Y.; Hou, J. Non-Competitive and Competitive Adsorption of Pb (II) and Zn (II) Ions onto SDS in Process of Micellar-Enhanced Ultrafifiltration. Sustainability 2018, 1, 1–12.
  • Gebretsadik, H.; Gebrekidan, A.; Demlie, L. Removal of Heavy Metals from Aqueous Solutions Using EucalyptusCamaldulensis: An Alternate Low-Cost Adsorbent. Cogent. Chem. 2020, 6, 25–32.
  • Mouni, L.; Belkhiri, L.; Bollinger, J.-C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from Aqueous Solutions by Adsorption on Kaolin: kinetic and Equilibrium Studies. Appl. Clay Sci. 2018, 153, 38–45. DOI: 10.1016/j.clay.2017.11.034.
  • Edet, U. A.; Ifelebuegu, A. O. Kinetics Isotherms and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. DOI: 10.3390/pr8060665.
  • Xu, P.; Zeng, G. M.; Huang, D. L.; Yan, M.; Chen, M.; Lai, C.; Jiang, H.; Wu, H. P.; Chen, G. M.; Wan, J. Fabrication of Reduced Glutathione Functionalized Iron Oxide Nanoparticles for Magnetic Removal of Pb (II) from Wastewater. J. Taiwan Inst. Chem. Eng. 2017, 71, 165–173. DOI: 10.1016/j.jtice.2016.11.031.
  • Fan, X.; Liu, H.; Anang, E.; Ren, D. Effects of Electronegativity and Hydration Energy on the Selective Adsorption of Heavy Metal Ions by Synthetic NaX Zeolite. Materials (Basel) 2021, 14, 4066. DOI: 10.3390/ma14154066.
  • Bankole, M. T.; Abdulkareem, A. S.; Tijani, J. O.; Ochigbo, S. S.; Afolabi, A. S.; Roos, W. D. Chemical Oxygen Demand Removal from Electroplating Wastewater by Purifified and Polymer Functionalized Carbon Nanotubes Adsorbents. Water Resour. Ind. 2017, 18, 33–50. DOI: 10.1016/j.wri.2017.07.001.
  • Ramadoss, R.; Subramaniam, D. Removal of Divalent Nickel from Aqueous Solution Using Blue-Green Marine Algae: adsorption Modeling and Applicability of Various Isotherm Models. Sep. Sci. Technol. 2018, 54, 1–19.
  • Lshabanat, M.; Al-Mufarij, R. S.; Al-Senani, G. M. Study on Adsorption of Malachite Green by Date Palm Fiber. Orient. J. Chem. 2016, 32, 3139–3144. DOI: 10.13005/ojc/320636.
  • Singh, S.; Anil, A. G.; Khasnabis, S.; Kumar, V.; Nath, B.; Adiga, V.; Kumar Naik, T. S.; Subramanian, S.; Kumar, V.; Singh, J.; Ramamurthy, P. C. Sustainable Removal of Cr (VI) Using Graphene Oxide-Zinc Oxide Nano: Adsorption Kinetics, Isotherms and Thermodynamics. Environ. Res. 2022, 203, 111891. DOI: 10.1016/j.envres.2021.111891.
  • Manjuladevi, M.; Anitha, R.; Manonmani, S. Kinetic Study on Adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) Ions from Aqueous Solutions Using Activated Carbon Prepared from Cucumis Melo Peel. Appl. Water Sci. 2018, 8, 1–8.
  • Zand, A. D.; Abyaneh, M. R. Adsorption of Lead, Manganese, and Copper onto Biochar in Landfill Leachate: implication of Non-Linear Regression Analysis. Sustain. Environ. Res. 2020, 30, 1–13. DOI: 10.1186/s42834-020-00061-9.
  • Ahmad, K. S.; Jaffri, S. B. Phytosynthetic Ag Doped Zno Nanoparticles: Semiconducting Green Remediators: Photocatalytic and Antimicrobial Potential of Green Nanoparticles. Open Chem. 2018, 16, 556–570. DOI: 10.1515/chem-2018-0060.
  • Amadi, O. K.; Okoro, I. A.; Uko, A. E. Isotherm and Thermodynamic Studies on Biosorption of Metal (ii) Ions from Aqueous Solution Using Calopogonium Muconoides (Calopo) Seed Pod. ChemSearch J 2021, 12, 31–40.
  • Agarwal, M.; Dey, P.; Upadhayaya, S.; Dohare, R. Adsorption Efficiency of Magnetite Nanoparticles for Chromium (VI) Removal from Water. J. Indian Chem. Soc. 2016, 93, 199–209.
  • Anusa, R.; Ravichandran, C.; Sivakumar, E. K. T. Removal of Heavy Metal Ons from Industrial Waste Water by nano-ZnO in Presence of Lectrogeneratedenton’s Reagent. Int. J. ChemTech Res. 2017, 10(7), 501–508.
  • Hossain, M. T.; Hossain, M. M.; Begum, M. H. A.; Shahjahan, M.; Islam, M. M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224. DOI: 10.3329/bjsir.v53i3.38269.
  • Kamath, S.; Gopal, V.; Ramanjaneyalu, V.; Kamila, S. Application of ZnO Nano Rods for the Batch Adsorption of Cr (VI): a Study of Kinetics and Isotherms. Am. J. Appl. Sci. 2019, 16, 1–12.
  • Rivera, F. L.; Palomares, F. J. H.; Pilar, M. E. Improvement in Heavy Metal Removal from Wastewater Using an External Magnetic Inductor. Nanomater 2019, 9, 1–15.
  • Fato, F. P.; Li, D. Z.; Zhao, L.; Qiu, K.; Long, Y. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesop Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549. DOI: 10.1021/acsomega.9b00731.
  • Zhang, M.; Yin, Q.; Ji, X.; Wang, F.; Gao, X.; Zhao, M. High and Fast Adsorption of Cd (II) and Pb(II) Ions from Aqueous Solutions by a Waste Biomass Based Hydrogel. Sci. Rep. 2020, 10, 1–13. DOI: 10.1038/s41598-020-60160-w.
  • Kalantari, K.; Ahmad, M. B.; Masoumi, H. R.; Shameli, K.; Basri, K.; Khandanlou, R. Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology. Int. J. Mol. Sci. 2014, 15, 1–27.
  • Norouzian, B. A.; Mahvi, A. H.; Gholami, M.; Rastkari, N.; Delikhoon, M. One-Pot Synthesis, Characterization and Adsorption Studies of Amine-Functionalized Magnetite Nanoparticles for Removal of Cr (VI) and Ni (II) Ions from Aqueous Solution: kinetic, Isotherm and Thermodynamic Studies. J. Environ. Health Sci. Eng. 2016, 14, 1–12.
  • Khandanlou, R.; Ahmad, M. B.; Fard Masoumi, H. R.; Shameli, K.; Basri, M.; Kalantari, K. Rapid Adsorption of Copper (II) and Lead (II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study. PLoS One. 2015, 10, e0120264-19. DOI: 10.1371/journal.pone.0120264.
  • Nasser-Abdelhamid, H.; Mathew, A. P. Cellulose-Zeolitic Imidazolate Frameworks (CelloZIFs) for Multifunctional Environmental Remediation: Adsorption and Catalytic Degradation. Chem. Eng. J. 2021, 426, 131733. DOI: 10.1016/j.cej.2021.131733.
  • Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of Temperature on the Size of Biosynthesized Silver Nanoparticle: Deep Insight into Microscopic Kinetics Analysis. Arab. J. Chem. 2020, 13, 1011–1019. DOI: 10.1016/j.arabjc.2017.09.004.
  • Bayuo, J.; Abukari, M. A.; Pelig-Ba, K. B. Desorption of Chromium (VI) and Lead (II) Ions and Regeneration of the Exhausted Adsorbent. Appl. Water Sci. 2020, 10, 1–6. DOI: 10.1007/s13201-020-01250-y.
  • WHO. 2017. Guidelines for Drinking-Water Quality 4th Edition Incorporating the 1st Addendum. https://www.who.int/publications/i/item/9789241549950 (accessed Jun 27, 2022).
  • Collivignarelli, M. C.; Canato, M.; Abbà, A.; Carnevale, M. M. Biosolids: What Are the Different Types of Reuse? J. Clean Prod. 2019, 238, 117–844.
  • Fuke, P.; T, M. M.; Kumar, M.; Sawarkar, A. D.; Pandey, A.; Singh, L. Role of Microbial Diversity to Influence the Growth and Environmental Remediation Capacity of Bamboo: A Review. Ind. Crop Prod. 2021, 167, 113567. DOI: 10.1016/j.indcrop.2021.113567.
  • Kumar, V.; Singh, K.; Shah, M. P.; Kumar, M. Phytocapping: An Eco-Sustainable Green Technology for Environmental Pollution Control. Bioremediation Environ. Sustain. Elsevier, Amsterdam, Netherlands, 2021, 481–491.
  • Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 1–11. DOI: 10.1155/2017/3039817.
  • Zhan, W.; Xinpei, D.; Hu, Z.; Xu, W.; Peng, S.; Khaliunaa, N.; Bushra, K.; Rooha, K. The Application of Error Function for Normalized Flux Prediction in Dead-End Microfiltration (MF) Process. Sep. Sci Technol. 2019, 56, 117–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.