Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 3
189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The assessment of response surface methodology (RSM) and artificial neural network (ANN) modeling in dry flue gas desulfurization at low temperatures

ORCID Icon, &
Pages 191-203 | Received 31 Mar 2022, Accepted 11 Oct 2022, Published online: 09 Feb 2023

References

  • Ritchie, H.; Roser, M. Energy. Our World in Data. 2020.
  • Denchak, M. Fossil Fuels: The Dirty Facts. 2018.
  • Lazkano, I.; Nøstbakken, L.; Pelli, M. From Fossil Fuels to Renewables: The Role of Electricity Storage. Eur. Econ. Rev. 2017, 99, 113–129. DOI: 10.1016/j.euroecorev.2017.03.013.
  • Guigard, D. S. Sulphur Dioxide: Environmental Effects, Fate and Behaviour. Alberta Environment, Science & Standards Branch: Edmonton, Canada, 2003.
  • Guttikunda, S. K.; Jawahar, P. Atmospheric Emissions and Pollution from the Coal-Fired Thermal Power Plants in India. Atmos. Environ. 2014, 92, 449–460. DOI: 10.1016/j.atmosenv.2014.04.057.
  • Munawer, M. E. Human Health and Environmental Impacts of Coal Combustion and Post-Combustion Wastes. J. Sustainable Min. 2018, 17, 87–96. DOI: 10.1016/j.jsm.2017.12.007.
  • Calvo, V. L. V.; Giner-Santonja, G.; Alonso-Fariñas, B.; Aguado, J. M. The Effect of the European Industrial Emissions Directive on the Air Emission Limit Values Set by Competent Authorities in the Permitting Procedure: The Case of the Spanish Cement Industry. Sci Total Environ 2021, 773, 145491. DOI: 10.1016/j.scitotenv.2021.145491.
  • Davidson, J.; Norbeck, J. M. An Interactive History of the Clean Air Act: Scientific and Policy Perspectives. Elsevier: Amsterdam, Netherlands, 2011.
  • Ladwig, K. J.; Blythe, G. M. Flue-Gas Desulfurization Products and Other Air Emissions Controls. In Coal Combustion Products (CCP’s); Robl, T., Oberlink. A., Jones, R., Eds., Elsevier: Amsterdam, Netherlands, 2017; pp 67–95.
  • Li, X.; Han, J.; Liu, Y.; Dou, Z.; Zhang, T. Summary of Research Progress on Industrial Flue Gas Desulfurization Technology. Sep. Purif. Technol. 2022, 281, 119849. DOI: 10.1016/j.seppur.2021.119849.
  • Carpenter, A. M. Low Water FGD Technologies. 2012, p 73.
  • Srivastava, R. K.; Jozewicz, W. Flue Gas Desulfurization: The State of the Art. J. Air Waste Manag. Assoc. 2001, 51, 1676–1688. DOI: 10.1080/10473289.2001.10464387.
  • Ogenga, D. O.; Siagi, Z. O.; Onyango, M. S.; Mbarawa, M. An Overview the Use of Ca (OH) 2/Fly Ash in Flue Gas Desulphurization. R&D J. South African Inst. Mech. Eng. 2008, 24, 4–8.
  • Rathnayake, M.; Julnipitawong, P.; Tangtermsirikul, S.; Toochinda, P. Utilization of Coal Fly Ash and Bottom Ash as Solid Sorbents for Sulfur Dioxide Reduction from Coal Fired Power Plant: Life Cycle Assessment and Applications. J. Cleaner Prod. 2018, 202, 934–945. DOI: 10.1016/j.jclepro.2018.08.204.
  • Rikker, Y. O.; Kobylkin, M. V.; Batukhtin, A. G. Improving the Efficiency of Flue Gas Desulphurization of TPS. In IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2019.
  • Kumar, L.; Jana, S. K. Advances in Absorbents and Techniques Used in Wet and Dry FGD: A Critical Review. Rev. Chem. Eng. 2021, 38, 843–880. DOI: 10.1515/revce-2020-0029.
  • Poullikkas, A. Review of Design, Operating, and Financial Considerations in Flue Gas Desulfurization Systems. Energy Technol. Policy 2015, 2, 92–103. DOI: 10.1080/23317000.2015.1064794.
  • Ren, Y.; Bao, H. Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net. In IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2016.
  • Lang, S.; Reggelin, T.; Müller, M.; Nahhas, A. Open-Source Discrete-Event Simulation Software for Applications in Production and Logistics: An Alternative to Commercial Tools? Proc. Comput. Sci. 2021, 180, 978–987. DOI: 10.1016/j.procs.2021.01.349.
  • Chemmangattuvalappil, N. G.; Chon, C. H.; Sum, D. N. K.; Elyas, R.; Chen, C.-L.; Lee, H.-Y.; Elms, R. D. Chemical Engineering Process Simulation. Elsevier: Amsterdam, Netherlands, 2017.
  • Chaves, I. D. G.; López, J. R. G.; Zapata, J. L. G.; Robayo, A. L.; Niño, G. R. Process Simulation in Chemical Engineering. In Process Analysis and Simulation in Chemical Engineering; Chaves, I. D. G.; López, J. R. G.; Zapata, J. L. G.; Robayo, A. L.; Niño, G. R., Eds., Springer: Switzerland, 2016; pp 1–51.
  • Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. A Novel Dynamic Simulation Model for the Thermo-Economic Analysis and Optimisation of District Heating Systems. Energy Convers. Manage. 2020, 220, 113052. DOI: 10.1016/j.enconman.2020.113052.
  • Tryggvason, G. Computational Fluid Dynamics. Evolution 2017, 1, 2.
  • Maina, P.; Mbarawa, M. Enhancement of Lime Reactivity by Addition of Diatomite. Fuel Process. Technol. 2011, 92, 1910–1919. DOI: 10.1016/j.fuproc.2011.05.011.
  • Amjed, N.; Iqbal, M.; Bhatti, I. A.; Nazir, A. Coal Desulphurization and Conditions Optimization through Response Surface Methodology, Khushab Mines, Pakistan. Energy Sources Part A 2017, 39, 1235–1241. DOI: 10.1080/15567036.2017.1319439.
  • Kumar, L.; Jana, S. K.; Datta, D. Application of Response Surface Methodology to Absorptive Separation of SO2 from Its Mixture with Air Using Marble Waste. Chem. Eng. Commun. 2020, 207, 458–473. DOI: 10.1080/00986445.2019.1605358.
  • El Bakkari, M.; Bindiganavile, V.; Boluk, Y. Facile Synthesis of Calcium Hydroxide Nanoparticles onto TEMPO-Oxidized Cellulose Nanofibers for Heritage Conservation. ACS Omega 2019, 4, 20606–20611. DOI: 10.1021/acsomega.9b02643.
  • Karatepe, N.; Erdoğan, N.; Ersoy-Meriçboyu, A.; Küçükbayrak, S. Preparation of Diatomite/Ca(OH)2 Sorbents and Modelling Their Sulphation Reaction. Chem. Eng. Sci. 2004, 59, 3883–3889. DOI: 10.1016/j.ces.2004.04.013.
  • Aydar, A. Y. Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. In Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes; Silva, V., Ed., IntechOpen: London, UK, 2018; pp 157–169.
  • Patel, K. A.; Brahmbhatt, P. K. Response Surface Methodology Based Desirability Approach for Optimization of Roller Burnishing Process Parameter. J. Inst. Eng. India Ser. C 2018, 99, 729–736. DOI: 10.1007/s40032-017-0368-8.
  • Kumari, M.; Gupta, S. K. Response Surface Methodological (RSM) Approach for Optimizing the Removal of Trihalomethanes (THMs) and Its Precursor’s by Surfactant Modified Magnetic Nanoadsorbents (sMNP)-an Endeavor to Diminish Probable Cancer Risk. Sci. Rep. 2019, 9, 1–11. DOI: 10.1038/s41598-019-54902-8.
  • Mumtaz, M. W.; Adnan, A.; Mukhtar, H.; Rashid, U.; Danish, M. Biodiesel Production through Chemical and Biochemical Transesterification. In Clean Energy for Sustainable Development; Rasul, M. G., Azad, A. K., Sharma, S. C., Eds., Elsevier: Amsterdam, Netherlands, 2017; pp 465–485.
  • Breig, S. J. M.; Luti, K. J. K. Response Surface Methodology: A Review on Its Applications and Challenges in Microbial Cultures. Mater. Today: Proc. 2021, 42, 2277–2284.
  • Rahman, A. S. Effects of Nanofibers on Properties of Geopolymer Composites. In Nanotechnology in Eco-Efficient Construction; Jones, G., Ed., Elsevier: Amsterdam, Netherlands, 2019; pp 123–140.
  • Sarabia, L. A.; Ortiz, M. C.; Sánchez, M. S. Response Surface Methodology. 2020.
  • Bohani, F. A.; Suliman, A.; Saripuddin, M.; Sameon, S. S.; Md Salleh, N. S.; Nazeri, S. A Comprehensive Analysis of Supervised Learning Techniques for Electricity Theft Detection. J. Electr. Comput. Eng. 2021, 2021, e9136206–10. DOI: 10.1155/2021/9136206.
  • Opěla, P.; Schindler, I.; Kawulok, P.; Kawulok, R.; Rusz, S.; Sauer, M. Shallow and Deep Learning of an Artificial Neural Network Model Describing a Hot Flow Stress Evolution: A Comparative Study. Mater. Des. 2022, 220, 110880. DOI: 10.1016/j.matdes.2022.110880.
  • Tao, Q.; Li, L.; Huang, X.; Xi, X.; Wang, S.; Suykens, J. A. Piecewise linear Neural Networks and Deep Learning. Nat. Rev. Methods Primers 2022, 2, 1–17. DOI: 10.1038/s43586-022-00125-7.
  • Xu, Y.; Zhou, Y.; Sekula, P.; Ding, L. Machine Learning in Construction: From Shallow to Deep Learning. Dev. Built Environ. 2021, 6, 100045. DOI: 10.1016/j.dibe.2021.100045.
  • Eesa, A. S.; Arabo, W. K. A Normalization Methods for Backpropagation: A Comparative Study. Sci. J. Univ. Zakho 2017, 5, 319–323. DOI: 10.25271/2017.5.4.381.
  • Park, Y.-S.; Lek, S. Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In Developments in Environmental Modelling; Jørgensen, S. E., Ed., Elsevier: Amsterdam, Netherlands, 2016; Vol. 28; pp 123–140.
  • Asaad, R. R.; Ali, R. I. Back Propagation Neural Network (BPNN) and Sigmoid Activation Function in Multi-Layer Networks. Acad. J. Nawroz Univ. 2019, 8, 216–221. DOI: 10.25007/ajnu.v8n4a464.
  • Dubey, S. R.; Singh, S. K.; Chaudhuri, B. B. Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark. Neurocomputing 2022, 503, 92–108. DOI: 10.1016/j.neucom.2022.06.111.
  • Dubey, S. R.; Chakraborty, S. Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval. Multimed. Tools Appl. 2021, 80, 23181–23206. DOI: 10.1007/s11042-020-10269-x.
  • Sharma, S.; Sharma, S.; Athaiya, A. Activation Functions in Neural Networks. IJEAST 2020, 04, 310–316. DOI: 10.33564/IJEAST.2020.v04i12.054.
  • Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. ineering 2020, 8, 100189. DOI: 10.1016/j.rineng.2020.100189.
  • Maran, J. P.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Artificial Neural Network and Response Surface Methodology Modeling in Mass Transfer Parameters Predictions during Osmotic Dehydration of Carica Papaya L. Alexandria Eng. J. 2013, 52, 507–516. DOI: 10.1016/j.aej.2013.06.007.
  • Thoai, D. N.; Tongurai, C.; Prasertsit, K.; Kumar, A. Predictive Capability Evaluation of RSM and ANN in Modeling and Optimization of Biodiesel Production from Palm (Elaeisguineensis) Oil. Int. J. Appl. Eng. Res. 2018, 13, 7529–7540.
  • Jha, A. K.; Sit, N. Comparison of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Modelling for Supercritical Fluid Extraction of Phytochemicals from Terminalia Chebula Pulp and Optimization Using RSM Coupled with Desirability Function (DF) and Genetic Algorithm (GA) and ANN with GA. Ind. Crops Prod. 2021, 170, 113769. DOI: 10.1016/j.indcrop.2021.113769.
  • Sagbas, A.; Gürtuna, F.; Polat, U. Comparison of ANN and RSM Modeling Approaches for WEDM Process Optimization. Mater. Test. 2021, 63, 386–392. DOI: 10.1515/mt-2020-0057.
  • Patel, K. A.; Brahmbhatt, P. K. A Comparative Study of the RSM and ANN Models for Predicting Surface Roughness in Roller Burnishing. Proc. Technol. 2016, 23, 391–397. DOI: 10.1016/j.protcy.2016.03.042.
  • Vu, N.-T.; Do, K.-U. Prediction of Ammonium Removal by Biochar Produced from Agricultural Wastes Using Artificial Neural Networks: Prospects and Bottlenecks. In Soft Computing Techniques in Solid Waste and Wastewater Management; Karri, R. R., Ravindran, G., Dehghani, M. H., Eds., Elsevier: Amsterdam, Netherlads, 2021; pp 455–467.
  • Zayani, R.; Bouallegue, R.; Roviras, D. Levenberg-Marquardt Learning Neural Network for Adaptive Predistortion for Time-Varying HPA with Memory in OFDM Systems. In 2008 16th European Signal Processing Conference; IEEE: 2008.
  • Danmaliki, G. I.; Saleh, T. A.; Shamsuddeen, A. A. Response surface Methodology Optimization of Adsorptive Desulfurization on Nickel/Activated Carbon. Chem. Eng. J. 2017, 313, 993–1003. DOI: 10.1016/j.cej.2016.10.141.
  • Dahlan, I.; Lee, K. T.; Kamaruddin, A. H.; Mohamed, A. R. Analysis of SO2 Sorption Capacity of Rice Husk Ash (RHA)/CaO/NaOH Sorbents Using Response Surface Methodology (RSM): Untreated and Pretreated RHA. Environ. Sci. Technol. 2008, 42, 1499–1504. DOI: 10.1021/es702232k.
  • Germec, M.; Turhan, I. Enhanced Production of Aspergillus Niger Inulinase from Sugar Beet Molasses and Its Kinetic Modeling. Biotechnol. Lett. 2020, 42, 1939–1955. DOI: 10.1007/s10529-020-02913-1.
  • Atalar, I.; Dervisoglu, M. Optimization of Spray Drying Process Parameters for Kefir Powder Using Response Surface Methodology. LWT - Food Sci. Technol. 2015, 60, 751–757. DOI: 10.1016/j.lwt.2014.10.023.
  • Pires, F. C. S.; Silva Pena, R. d Optimization of Spray Drying Process Parameters for Tucupi Powder Using the Response Surface Methodology. J. Food Sci. Technol. 2017, 54, 3459–3472. DOI: 10.1007/s13197-017-2803-5.
  • Bejani, M. M.; Ghatee, M. A Systematic Review on Overfitting Control in Shallow and Deep Neural Networks. Artif. Intell. Rev. 2021, 54, 6391–6438. DOI: 10.1007/s10462-021-09975-1.
  • Alhnaity, B.; Pearson, S.; Leontidis, G.; Kollias, S. Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments. In International Symposium on Advanced Technologies and Management for Innovative Greenhouses: GreenSys2019 1296, 2019.
  • Fatiha, B.; Sameh, B.; Youcef, S.; Zeineddine, D.; Nacer, R. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Optimization of the Immobilization Conditions for Lipase from Candida Rugosa on Amberjet® 4200-Cl. Prep. Biochem. Biotechnol. 2013, 43, 33–47. DOI: 10.1080/10826068.2012.693899.
  • Youssefi, S.; Emam-Djomeh, Z.; Mousavi, S. M. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in the Prediction of Quality Parameters of Spray-Dried Pomegranate Juice. Drying Technol. 2009, 27, 910–917. DOI: 10.1080/07373930902988247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.