Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 2
189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrothermal treatment enhances energy recovery from pig manure digestate and improves the properties of residues

, , , , , , , & show all
Pages 116-126 | Received 27 Aug 2022, Accepted 13 Jan 2023, Published online: 09 Feb 2023

References

  • NBSC (National Bureau of Statistics of China). China Rural Statistical Yearbook 2021. China Statistics Press: Beijing, 2021.
  • Li, H. M.; Zhang, N.; Guo, X.; Dou, M. Y.; Feng, Q.; Zou, S.; Huang, F. C. Summary of the Treatment Technology of Heavy Metals in Livestock and Poultry Breeding Waste. IOP Conf. Ser.: Earth Environ. Sci. 2020, 508, 012018. DOI: 10.1088/1755-1315/508/1/012018.
  • Nasir, I. M.; Ghazi, T. I. M.; Omar, R. Anaerobic Digestion Technology in Livestock Manure Treatment for Biogas Production: A Review. Eng. Life Sci. 2012, 12, 258–269. DOI: 10.1002/elsc.201100150.
  • Yao, Y.; Huang, G.; An, C.; Chen, X.; Zhang, P.; Xin, X.; Shen, J.; Agnew, J. Anaerobic Digestion of Livestock Manure in Cold Regions: Technological Advancements and Global Impacts. Renew. Sustain. Energy Rev. 2020, 119, 109494. DOI: 10.1016/j.rser.2019.109494.
  • Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The Anaerobic Digestion of Solid Organic Waste. Waste Manag. 2011, 31, 1737–1744. DOI: 10.1016/j.wasman.2011.03.021.
  • Yadav, M.; Joshi, C.; Paritosh, K.; Thakur, J.; Pareek, N.; Masakapalli, S. K.; Vivekanand, V. Organic Waste Conversion through Anaerobic Digestion: A Critical Insight into the Metabolic Pathways and Microbial Interactions. Metab. Eng. 2022, 69, 323–337. DOI: 10.1016/j.ymben.2021.11.014.
  • Yuan, H.; Zhu, N. Progress in Inhibition Mechanisms and Process Control of Intermediates and by-Products in Sewage Sludge Anaerobic Digestion. Renew. Sustain. Energy Rev. 2016, 58, 429–438. DOI: 10.1016/j.rser.2015.12.261.
  • Park, C.; Lee, C.; Kim, S.; Chen, Y.; Chase, H. A. Upgrading of Anaerobic Digestion by Incorporating Two Different Hydrolysis Processes. J. Biosci. Bioeng. 2005, 100, 164–167.
  • Usman, M.; Ren, S.; Ji, M.; O-Thong, S.; Qian, Y.; Luo, G.; Zhang, S. Characterization and Biogas Production Potentials of Aqueous Phase Produced from Hydrothermal Carbonization of Biomass – Major Components and Their Binary Mixtures. Chem. Eng. J. 2020, 388, 124201. DOI: 10.1016/j.cej.2020.124201.
  • Selvaraj, P. S.; Periasamy, K.; Suganya, K.; Ramadass, K.; Muthusamy, S.; Ramesh, P.; Bush, R.; Vincent, S. G. T.; Palanisami, T. Novel Resources Recovery from Anaerobic Digestates: Current Trends and Future Perspectives. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1915–1999. DOI: 10.1080/10643389.2020.1864957.
  • Pecchi, M.; Baratieri, M. Coupling Anaerobic Digestion with Gasification, Pyrolysis or Hydrothermal Carbonization: A Review. Renew. Sustain. Energy Rev. 2019, 105, 462–475. DOI: 10.1016/j.rser.2019.02.003.
  • Belete, Y. Z.; Mau, V.; Spitzer, R. Y.; Posmanik, R.; Jassby, D.; Iddya, A.; Kassem, N.; Tester, J. W.; Gross, A. Hydrothermal Carbonization of Anaerobic Digestate and Manure from a Dairy Farm on Energy Recovery and the Fate of Nutrients. Bioresour. Technol. 2021, 333, 125164.
  • Okoro, O. V.; Sun, Z. The Characterisation of Biochar and Biocrude Products of the Hydrothermal Liquefaction of Raw Digestate Biomass. Biomass Conv. Bioref. 2021, 11, 2947–2961. DOI: 10.1007/s13399-020-00672-7.
  • Li, C.; Li, J.; Pan, L.; Zhu, X.; Xie, S.; Yu, G.; Wang, Y.; Pan, X.; Zhu, G.; Angelidaki, I. Angelidaki, I. Treatment of Digestate Residues for Energy Recovery and Biochar Production: From Lab to Pilot-Scale Verification. J. Clean. Prod. 2020, 265, 121852. DOI: 10.1016/j.jclepro.2020.121852.
  • Wang, L.; Chang, Y.; Li, A. Hydrothermal Carbonization for Energy-Efficient Processing of Sewage Sludge: A Review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. DOI: 10.1016/j.rser.2019.04.011.
  • Marzbali, M. H.; Kundu, S.; Halder, P.; Patel, S.; Hakeem, I. G.; Paz-Ferreiro, J.; Madapusi, S.; Surapaneni, A.; Shah, K. Wet Organic Waste Treatment via Hydrothermal Processing: A Critical Review. Chemosphere 2021, 279, 130557. DOI: 10.1016/j.chemosphere.2021.130557.
  • Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J. P.; Carrère, H. Do Furanic and Phenolic Compounds of Lignocellulosic and Algae Biomass Hydrolyzate Inhibit Anaerobic Mixed Cultures? A Comprehensive Review. Biotechnol. Adv. 2014, 32, 934–951. DOI: 10.1016/j.biotechadv.2014.04.007.
  • Schieder, D.; Schneider, R.; Bischof, F. Thermal Hydrolysis (TDH) as a Pretreatment Method for the Digestion of Organic Waste. Water Sci. Technol. 2000, 41, 181–187.
  • Ipiales, R. P.; de la Rubia, M. A.; Diaz, E.; Mohedano, A. F.; Rodriguez, J. J. Integration of Hydrothermal Carbonization and Anaerobic Digestion for Energy Recovery of Biomass Waste: An Overview. Energy Fuels 2021, 35, 17032–17050. DOI: 10.1021/acs.energyfuels.1c01681.
  • Sun, S.; Sun, S.; Cao, X.; Sun, R. The Role of Pretreatment in Improving the Enzymatic Hydrolysis of Lignocellulosic Materials. Bioresour. Technol. 2016, 199, 49–58.
  • Hong, C.; Wu, H. Optimization of Volatile Fatty Acid Production with co-Substrate of Food Wastes and Dewatered Excess Sludge Using Response Surface Methodology. Bioresour. Technol. 2010, 101, 5487–5493.
  • Wang, J.; Zhao, N.; Zhang, X.; Lei Jiang, L.; Kang, Y. R.; Chu, Y. X.; He, R. Additional Ratios of Hydrolysates from Lignocellulosic Digestate at Different Hydrothermal Temperatures Influencing Anaerobic Digestion Performance. Environ. Sci. Pollut. Res. 2022, DOI: 10.1007/s11356-022-24519-y.
  • Kang, Y. R.; Su, Y.; Wang, J.; Chu, Y. X.; Tian, G.; He, R. Effects of Different Pretreatment Methods on Biogas Production and Microbial Community in Anaerobic Digestion of Wheat Straw. Environ. Sci. Pollut. Res. Int. 2021, 28, 51772–51785.
  • Bao, S. D. Soil Agro-Chemistry Analysis. China Agricultural Press: Beijing, 2000.
  • Zhao, L.; Zhong, S.; Fang, K.; Qian, Z.; Chen, J. Determination of Cadmium(II), Cobalt(II), Nickel(II), Lead(II), Zinc(II), and Copper(II) in Water Samples Using Dual-Cloud Point Extraction and Inductively Coupled Plasma Emission Spectrometry. J. Hazard Mater. 2012, 239–240, 206–212. DOI: 10.1016/j.jhazmat.2012.08.066.
  • Yao, L.; Li, Y.; Li, Z.; Shen, D.; Feng, H.; Zhou, H.; Wang, M. Prevalence of Fluoroquinolone, Macrolide and Sulfonamide-Related Resistance Genes in Landfills from East China, Mainly Driven by MGEs. Ecotoxicol. Environ. Saf. 2020, 190, 110131.
  • Wu, K.; Gao, Y.; Zhu, G.; Zhu, J.; Yuan, Q.; Chen, Y.; Cai, M.; Feng, L. Characterization of Dairy Manure Hydrochar and Aqueous Phase Products Generated by Hydrothermal Carbonization at Different Temperatures. J. Anal. Appl. Pyrolysis 2017, 127, 335–342. DOI: 10.1016/j.jaap.2017.07.017.
  • Fan, S.; Zhang, P.; Li, F.; Jin, S.; Wang, S.; Zhou, S. A Review of Lignocellulose Change during Hydrothermal Pretreatment for Bioenergy Production. COC 2016, 20, 2799–2809. DOI: 10.2174/1385272820666160513154113.
  • Abdullah, R.; Ueda, K.; Saka, S. Hydrothermal Decomposition of Various Crystalline Celluloses as Treated by Semi-Flow Hot-Compressed Water. J. Wood Sci. 2014, 60, 278–286. DOI: 10.1007/s10086-014-1401-7.
  • Gao, Y.; Wang, X. H.; Yang, H. P.; Chen, H. P. Characterization of Products from Hydrothermal Treatments of Cellulose. Energy 2012, 42, 457–465. DOI: 10.1016/j.energy.2012.03.023.
  • Kambo, H. S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. DOI: 10.1016/j.rser.2015.01.050.
  • Khan, T. A.; Saud, A. S.; Jamari, S. S.; Rahim, M. H. A.; Park, J. W.; Kim, H. J. Hydrothermal Carbonization of Lignocellulosic Biomass for Carbon Rich Material Preparation: A Review. Biomass Bioenerg. 2019, 130, 105384. DOI: 10.1016/j.biombioe.2019.105384.
  • Gaworski, M.; Jabłoński, S.; Pawlaczyk-Graja, I.; Ziewiecki, R.; Rutkowski, P.; Wieczyńska, A.; Gancarz, R.; Łukaszewicz, M. Enhancing Biogas Plant Production Using Pig Manure and Corn Silage by Adding Wheat Straw Processed with Liquid Hot Water and Steam Explosion. Biotechnol. Biofuels 2017, 10, 259. DOI: 10.1186/s13068-017-0922-x.
  • Qaramaleki, S. V.; Villamil, J. A.; Mohedano, A. F.; Coronella, C. J. Factors Affecting Solubilization of Phosphorus and Nitrogen through Hydrothermal Carbonization of Animal Manure. ACS Sustainable Chem. Eng. 2020, 8, 12462–12470. DOI: 10.1021/acssuschemeng.0c03268.
  • Umarin, J.; Sureewan, S.; Alissara, R. Assessment of Organosolv, Hydrothermal, and Combined Organosolv and Hydrothermal with Enzymatic Pretreatment to Increase the Production of Biogas from Napier Grass and Napier Silage. Renew. Energ. 2022, 181, 1237–1249.
  • Gollakota, A. R. K.; Kishore, N.; Gu, S. A Review on Hydrothermal Liquefaction of Biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. DOI: 10.1016/j.rser.2017.05.178.
  • Batista, G.; Souza, R. B. A.; Pratto, B.; dos Santos-Rocha, M. S. R.; Cruz, A. J. G. Effect of Severity Factor on the Hydrothermal Pretreatment of Sugarcane Straw. Bioresour. Technol. 2019, 275, 321–327. DOI: 10.1016/j.biortech.2018.12.073.
  • Kim, D. H.; Lee, S. B.; Jeong, G. T. Production of Reducing Sugar from Enteromorpha Intestinalis by Hydrothermal and Enzymatic Hydrolysis. Bioresour. Technol. 2014, 161, 348–353. DOI: 10.1016/j.biortech.2014.03.078.
  • Zhu, Z.; Liu, Z.; Zhang, Y.; Li, B.; Lu, H.; Duan, N.; Si, B.; Shen, R.; Lu, J. Recovery of Reducing Sugars and Volatile Fatty Acids from Cornstalk at Different Hydrothermal Treatment Severity. Bioresour. Technol. 2016, 199, 220–227.
  • Ghimire, N.; Bakke, R.; Bergland, W. H. Liquefaction of Lignocellulosic Biomass for Methane Production: A Review. Bioresour. Technol. 2021, 332, 125068. DOI: 10.1016/j.biortech.2021.125068.
  • Kim, D.; Lee, K.; Park, K. Y. Enhancement of Biogas Production from Anaerobic Digestion of Waste Activated Sludge by Hydrothermal Pre-Treatment. Int. Biodeterior. Biodegrad. 2015, 101, 42–46. DOI: 10.1016/j.ibiod.2015.03.025.
  • Shi, Z. J.; Campanaro, S.; Usman, M.; Treu, L.; Basile, A.; Angelidaki, I.; Zhang, S. C.; Luo, G. Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge. Environ. Sci. Technol. 2021, 55, 8351–8361.
  • Ekpo, U.; Ross, A. B.; Camargo-Valero, M. A.; Fletcher, L. A. Influence of pH on Hydrothermal Treatment of Swine Manure: Impact on Extraction of Nitrogen and Phosphorus in Process Water. Bioresour. Technol. 2016, 214, 637–644. DOI: 10.1016/j.biortech.2016.05.012.
  • Heilmann, S. M.; Molde, J. S.; Timler, J. G.; Wood, B. M.; Mikula, A. L.; Vozhdayev, G. V.; Colosky, E. C.; Spokas, K. A.; Valentas, K. J. Phosphorus Reclamation through Hydrothermal Carbonization of Animal Manures. Environ. Sci. Technol. 2014, 48, 10323–10329. DOI: 10.1021/es501872k.
  • Kruse, A.; Koch, F.; Stelzl, K.; Wüst, D.; Zeller, M. Fate of Nitrogen during Hydrothermal Carbonization. Energy Fuels 2016, 30, 8037–8042. DOI: 10.1021/acs.energyfuels.6b01312.
  • Munir, M. T.; Mansouri, S. S.; Udugama, I. A.; Baroutian, S.; Gernaey, K. V.; Young, B. R. Resource Recovery from Organic Solid Waste Using Hydrothermal Processing: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2018, 96, 64–75. DOI: 10.1016/j.rser.2018.07.039.
  • Hu, X.; Zhou, Q.; Luo, Y. Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China. Environ. Pollut. 2010, 158, 2992–2998. DOI: 10.1016/j.envpol.2010.05.023.
  • Awad, M.; Tian, Z.; Zhang, Y.; Yang, M.; Yin, W.; Dong, L. Hydrothermal Pretreatment of Oxytetracycline Fermentation Residue: Removal of Oxytetracycline and Increasing the Potential for Anaerobic Digestion. Environ. Eng. Res. 2020, 26, 200258. DOI: 10.4491/eer.2020.258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.