Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 3
397
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Interactions of microplastics with contaminants in freshwater systems: a review of characteristics, bioaccessibility, and environmental factors affecting sorption

& ORCID Icon
Pages 222-235 | Received 25 Jun 2022, Accepted 31 Jan 2023, Published online: 20 Feb 2023

References

  • Mills, N. Plastics; Elsevier Science & Technology Books: Place of publication not identified, 1993.
  • Aggarwal, S. L.; Sweeting, O. J. Polyethylene: Preparation, Structure, and Properties. Chem. Rev 1957, 57, 665–742. DOI: 10.1021/cr50016a004.
  • Wünsch, J. R. Polystyrene: Synthesis, Production and Applications; iSmithers Rapra Publishing: Shropshire, 2000.
  • Maddah, H. A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. DOI: 10.5923/j.ajps.20160601.01
  • Oosten, T. v.; Beerkens, L.; Cudell, A.; Laganà, A.; Veiga, R. Properties of Plastics: A Guide for Conservators; Getty Conservation Institute: Los Angeles, CA, 2022.
  • DiGregorio, B. E. Biobased Performance Bioplastic: Mirel. Chem. Biol. 2009, 16, 1–2. DOI: 10.1016/j.chembiol.2009.01.001.
  • Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. DOI: 10.1002/cssc.202002044.
  • Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782-e1700782. DOI: 10.1126/sciadv.1700782.
  • Cox, K. D.; Covernton, G. A.; Davies, H. L.; Dower, J. F.; Juanes, F.; Dudas,.; S.; E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. DOI: 10.1021/acs.est.9b01517.
  • Gesamp, S. Fate and Effects of MP in the Marine Environment. J. Ser. GESAMP Rep. Stud. 2015, 90, 98. DOI: 10.13140/RG.2.1.3803.7925/
  • Hartmann, N. B.; Hüffer, T.; Thompson, R. C.; Hassellöv, M.; Verschoor, A.; Daugaard, A. E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. DOI: 10.1021/acs.est.8b05297.
  • Mammo, F. K.; Amoah, I. D.; Gani, K. M.; Pillay, L.; Ratha, S. K.; Bux, F.; Kumari, S. Microplastics in the Environment: Interactions with Microbes and Chemical Contaminants. Sci. Total Environ. 2020, 743, 140518. DOI: 10.1016/j.scitotenv.2020.140518.
  • Elizalde-Velázquez, G. A.; Gómez-Oliván, L. M. Microplastics in Aquatic Environments: A Review on Occurrence, Distribution, Toxic Effects, and Implications for Human Health. Sci. Total Environ. 2021, 780, 146551–146551. DOI: 10.1016/j.scitotenv.2021.146551.
  • Collicutt, B.; Juanes, F.; Dudas, S. E. Microplastics in Juvenile Chinook Salmon and Their Nearshore Environments on the East Coast of Vancouver Island. Environ. Pollut. 2019, 244, 135–142. DOI: 10.1016/j.envpol.2018.09.137.
  • Page, G. W. Comparison of Groundwater and Surface Water for Patterns and Levels of Contamination by Toxic Substances. Environ. Sci. Technol. 1981, 15, 1475–1481. DOI: 10.1021/es00094a008.
  • Covernton, G. A.; Cox, K. D.; Fleming, W. L.; Buirs, B. M.; Davies, H. L.; Juanes, F.; Dudas, S. E.; Dower, J. F. Large Size (>100‐μm) Microplastics Are Not Biomagnifying in Coastal Marine Food Webs of British Columbia, Canada. Ecol. Appl. 2022, 32, e2654. DOI: 10.1002/eap.2654.
  • Juhasz, A. L.; Tang, W.; Smith, E. Using in Vitro Bioaccessibility to Refine Estimates of Human Exposure to PAHs via Incidental Soil Ingestion. Environ. Res. 2016, 145, 145–153. DOI: 10.1016/j.envres.2015.12.001.
  • Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the Mass of Microplastics Ingested – a Pivotal First Step towards Human Health Risk Assessment. J. Hazard. Mater. 2021, 404, 124004. DOI: 10.1016/j.jhazmat.2020.124004.
  • Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I. M.; Van den Eede, G. Review of Micro- and Nanoplastic Contamination in the Food Chain. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess. 2019, 36, 639–673. DOI: 10.1080/19440049.2019.1583381.
  • Domenech, J.; Marcos, R. Pathways of Human Exposure to Microplastics, and Estimation of the Total Burden. Curr. Opin. Food Sci. 2021, 39, 144–151. DOI: 10.1016/j.cofs.2021.01.004.
  • Barboza, L. G. A.; Dick Vethaak, A.; Lavorante, B. R. B. O.; Lundebye, A.-K.; Guilhermino, L. Marine Microplastic Debris: An Emerging Issue for Food Security, Food Safety and Human Health. Mar. Pollut. Bull. 2018, 133, 336–348. DOI: 10.1016/j.marpolbul.2018.05.047.
  • Prata, J. C.; da Costa, J. P.; Lopes, I.; Andrady, A. L.; Duarte, A. C.; Rocha-Santos, T. A One Health Perspective of the Impacts of Microplastics on Animal, Human and Environmental Health. Sci. Total Environ. 2021, 777, 146094–146094. DOI: 10.1016/j.scitotenv.2021.146094.
  • Wright, S. L.; Kelly, F. J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. DOI: 10.1021/acs.est.7b00423.
  • Susanti, N. K. Y.; Mardiastuti, A.; Wardiatno, Y. Microplastics and the Impact of Plastic on Wildlife: A Literature Review. IOP Conference Series: Earth and Environmental Science, Bristol, 2020, p. 12013.
  • Sigler, M. The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions. Water Air Soil Pollut. 2014, 225, 1–9. DOI: 10.1007/s11270-014-2184-6.
  • Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. DOI: 10.1016/j.jhazmat.2017.10.014.
  • Caruso, G. Microplastics as Vectors of Contaminants. Mar. Pollut. Bull. 2019, 146, 921–924. DOI: 10.1016/j.marpolbul.2019.07.052.
  • Fred-Ahmadu, O. H.; Bhagwat, G.; Oluyoye, I.; Benson, N. U.; Ayejuyo, O. O.; Palanisami, T. Interaction of Chemical Contaminants with Microplastics: Principles and Perspectives. Sci. Total Environ. 2020, 706, 135978. DOI: 10.1016/j.scitotenv.2019.135978.
  • Torres, F. G.; Dioses-Salinas, D. C.; Pizarro-Ortega, C. I.; De-la-Torre, G. E. Sorption of Chemical Contaminants on Degradable and Non-Degradable Microplastics: Recent Progress and Research Trends. Sci. Total Environ. 2021, 757, 143875. DOI: 10.1016/j.scitotenv.2020.143875.
  • Martin, K.; Turner, A. Mobilization and Bioaccessibility of Cadmium in Coastal Sediment Contaminated by Microplastics. Mar. Pollut. Bull. 2019, 146, 940–944. DOI: 10.1016/j.marpolbul.2019.07.046.
  • Meunier, L.; Wragg, J.; Koch, I.; Reimer, K. J. Method Variables Affecting the Bioaccessibility of Arsenic in Soil. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2010, 45, 517–526. DOI: 10.1080/10934521003594863.
  • Davis, M. L.; Masten, S. J. Principles of Environmental Engineering and Science, 3rd ed.; McGraw-Hill: New York, NY, 2014.
  • Li, J.; Liu, H.; Paul Chen, J. Microplastics in Freshwater Systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection. Water Res. 2018, 137, 362–374. DOI: 10.1016/j.watres.2017.12.056.
  • Shah, D. O. Micelles, Microemulsions, and Monolayers: Science and Technology; M. Dekker: New York, NY, 1998.
  • Mills, A.; O’Rourke, C. Revised Disrupted Langmuir–Adsorption Model of Photocatalysis. J. Phys. Chem. C 2015, 119, 19941–19946. DOI: 10.1021/acs.jpcc.5b05787.
  • Ghannam, L.; Billon, L. Polystyrene-Coated Micro-Sized Particles by “in Situ” Surface Initiated Polymerization in Accord with Langmuir Model Adsorption. J. Colloid. Interface Sci. 2012, 374, 237–240. DOI: 10.1016/j.jcis.2012.01.048.
  • Biphenyls, P.; Ritter, L.; Solomon, K.; Forget, J.; Stemeroff, M.; O'Leary, C. Persistent Organic Pollutants. Canadian Network of Toxicology Centres: Guelph, ON, 1995.
  • Jiménez-Skrzypek, G.; Hernández-Sánchez, C.; Ortega-Zamora, C.; González-Sálamo, J.; González-Curbelo, M. Á.; Hernández-Borges, J. Microplastic-Adsorbed Organic Contaminants: Analytical Methods and Occurrence. TrAC, Trends Anal. Chem. 2021, 136, 116186. DOI: 10.1016/j.trac.2021.116186.
  • Zuo, L.-Z.; Li, H.-X.; Lin, L.; Sun, Y.-X.; Diao, Z.-H.; Liu, S.; Zhang, Z.-Y.; Xu, X.-R. Sorption and Desorption of Phenanthrene on Biodegradable Poly(Butylene Adipate co-Terephtalate) Microplastics. Chemosphere 2019, 215, 25–32. DOI: 10.1016/j.chemosphere.2018.09.173.
  • Sørensen, L.; Rogers, E.; Altin, D.; Salaberria, I.; Booth, A. M. Sorption of PAHs to Microplastic and Their Bioavailability and Toxicity to Marine Copepods under co-Exposure Conditions. Environ. Pollut. 2020, 258, 113844. DOI: 10.1016/j.envpol.2019.113844.
  • Wang, W.; Wang, J. Comparative Evaluation of Sorption Kinetics and Isotherms of Pyrene onto Microplastics. Chemosphere (Oxford ) 2018, 193, 567–573. DOI: 10.1016/j.chemosphere.2017.11.078.
  • Zhan, Z.; Wang, J.; Peng, J.; Xie, Q.; Huang, Y.; Gao, Y. Sorption of 3,3′,4,4′-Tetrachlorobiphenyl by Microplastics: A Case Study of Polypropylene. Mar. Pollut. Bull. 2016, 110, 559–563. DOI: 10.1016/j.marpolbul.2016.05.036.
  • Bakir, A.; Rowland, S. J.; Thompson, R. C. Enhanced Desorption of Persistent Organic Pollutants from Microplastics under Simulated Physiological Conditions. Environ. Pollut. 2014, 185, 16–23. DOI: 10.1016/j.envpol.2013.10.007.
  • Jiang, M.; Hu, L.; Lu, A.; Liang, G.; Lin, Z.; Zhang, T.; Xu, L.; Li, B.; Gong, W. Strong Sorption of Two Fungicides onto Biodegradable Microplastics with Emphasis on the Negligible Role of Environmental Factors. Environ. Pollut. 2020, 267, 115496–115496. DOI: 10.1016/j.envpol.2020.115496.
  • Meng, Y.; Liu, X.; Lu, S.; Zhang, T.; Jin, B.; Wang, Q.; Tang, Z.; Liu, Y.; Guo, X.; Zhou, J.; Xi, B. A Review on Occurrence and Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Lakes of China. Sci. Total Environ. 2019, 651, 2497–2506. DOI: 10.1016/j.scitotenv.2018.10.162.
  • Forsgren, A. Wastewater Treatment: Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs); CRC Press: Boca Raton, FL, 2015.
  • USEPA (Environmental Protection Agency). Polycyclicaromatic Hydrocarbons (PAHs)—EPA Fact Sheet; National Center for EnvironmentalAssessment, Office of Research and Development: Washington, DC, 2008.
  • Li, Z.; Hu, X.; Qin, L.; Yin, D. Evaluating the Effect of Different Modified Microplastics on the Availability of Polycyclic Aromatic Hydrocarbons. Water Res. 2020, 170, 115290. DOI: 10.1016/j.watres.2019.115290.
  • Strachan, W. M.; J. Polychlorinated Biphenyls (PCBs): Fate and Effects in the Canadian Environment; Environment Canada, Environmental Protection Service: Ottawa, 1988.
  • Stella, T.; Covino, S.; Burianová, E.; Filipová, A.; Křesinová, Z.; Voříšková, J.; Větrovský, T.; Baldrian, P.; Cajthaml, T. Chemical and Microbiological Characterization of an Aged PCB-Contaminated Soil. Sci. Total Environ. 2015, 533, 177–186. DOI: 10.1016/j.scitotenv.2015.06.019.
  • Haus, F.; German, J.; Junter, G.-A. Primary Biodegradability of Mineral Base Oils in Relation to Their Chemical and Physical Characteristics. Chemosphere 2001, 45, 983–990. DOI: 10.1016/S0045-6535(01)00027-3.
  • Liao, Y-l.; Yang, J-y Microplastic Serves as a Potential Vector for Cr in an in-Vitro Human Digestive Model. Sci. Total Environ. 2020, 703, 134805–134805. DOI: 10.1016/j.scitotenv.2019.134805.
  • Endo, S.; Droge, S. T. J.; Goss, K.-U. Polyparameter Linear Free Energy Models for Polyacrylate Fiber − Water Partition Coefficients to Evaluate the Efficiency of Solid-Phase Microextraction. Anal. Chem. 2011, 83, 1394–1400. DOI: 10.1021/ac102868e.
  • Guo, X.; Liu, Y.; Wang, J. Equilibrium, Kinetics and Molecular Dynamic Modeling of Sr2+ Sorption onto Microplastics. J. Hazard Mater. 2020, 400, 123324. DOI: 10.1016/j.jhazmat.2020.123324.
  • Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. DOI: 10.1007/s13593-012-0105-x.
  • Fu, L.; Lu, X.; Tan, J.; Zhang, H.; Zhang, Y.; Wang, S.; Chen, J. Bioaccumulation and Human Health Risks of OCPs and PCBs in Freshwater Products of Northeast China. Environ. Pollut. 2018, 242, 1527–1534. DOI: 10.1016/j.envpol.2018.08.046.
  • Godoy, V.; Martín-Lara, M. A.; Calero, M.; Blázquez, G. The Relevance of Interaction of Chemicals/Pollutants and Microplastic Samples as Route for Transporting Contaminants. Proc. Saf. Environ. Protect. 2020, 138, 312–323. DOI: 10.1016/j.psep.2020.03.033.
  • Turner, A.; Wallerstein, C.; Arnold, R. Identification, Origin and Characteristics of Bio-Bead Microplastics from Beaches in Western Europe. Sci. Total Environ. 2019, 664, 938–947. DOI: 10.1016/j.scitotenv.2019.01.281.
  • Besson, M.; Jacob, H.; Oberhaensli, F.; Taylor, A.; Swarzenski, P. W.; Metian, M. Preferential Adsorption of Cd, Cs and Zn onto Virgin Polyethylene Microplastic versus Sediment Particles. Mar. Pollut. Bull. 2020, 156, 111223. DOI: 10.1016/j.marpolbul.2020.111223.
  • Enuneku, A.; Omoruyi, O.; Tongo, I.; Ogbomida, E.; Ogbeide, O.; Ezemonye, L. Evaluating the Potential Health Risks of Heavy Metal Pollution in Sediment and Selected Benthic Fauna of Benin River, Southern Nigeria. Appl. Water Sci. 2018, 8, 224. DOI: 10.1007/s13201-018-0873-9.
  • Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M. A. The Potential of Microplastics as Carriers of Metals. Environ. Pollut. 2019, 255, 113363. DOI: 10.1016/j.envpol.2019.113363.
  • Zou, J.; Liu, X.; Zhang, D.; Yuan, X. Adsorption of Three Bivalent Metals by Four Chemical Distinct Microplastics. Chemosphere (Oxford) 2020, 248, 126064–126064. DOI: 10.1016/j.chemosphere.2020.126064.
  • Guo, X.; Hu, G.; Fan, X.; Jia, H. Sorption Properties of Cadmium on Microplastics: The Common Practice Experiment and a Two-Dimensional Correlation Spectroscopic Study. Ecotoxicol. Environ. Saf. 2020, 190, 110118. DOI: 10.1016/j.ecoenv.2019.110118.
  • Zhou, Y.; Yang, Y.; Liu, G.; He, G.; Liu, W. Adsorption Mechanism of Cadmium on Microplastics and Their Desorption Behavior in Sediment and Gut Environments: The Roles of Water pH, Lead Ions, Natural Organic Matter and Phenanthrene. Water Res. 2020, 184, 116209–116209. DOI: 10.1016/j.watres.2020.116209.
  • Fornaciari, J. C.; Weng, L.-C.; Alia, S.; Zhan, C.; Pham, T. A.; Bell, A. T.; Ogitsu, T.; Danilovic, N.; Weber, A. Z. Mechanistic Understanding of pH Effects on the Oxygen Evolution Reaction. Electrochim. Acta 2022, 405, 139810. DOI: 10.1016/j.electacta.2021.139810.
  • Huang, H. C.; Briggs, J. M. The Association between a Negatively Charged Ligand and the Electronegative Binding Pocket of Its Receptor. Biopolym. Origin. Res. Biomol. 2002, 63, 247–260. DOI: 10.1002/bip.10050.
  • Xu, B.; Liu, F.; Brookes, P. C.; Xu, J. Microplastics Play a Minor Role in Tetracycline Sorption in the Presence of Dissolved Organic Matter. Environ. Pollut. 2018, 240, 87–94. DOI: 10.1016/j.envpol.2018.04.113.
  • Liu, F-f.; Liu, G-z.; Zhu, Z-l.; Wang, S-c.; Zhao, F-f Interactions between Microplastics and Phthalate Esters as Affected by Microplastics Characteristics and Solution Chemistry. Chemosphere (Oxford) 2019, 214, 688–694. DOI: 10.1016/j.chemosphere.2018.09.174.
  • Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Chriestie, P.; Luo, Y. Enhanced Adsorption of Oxytetracycline to Weathered Microplastic Polystyrene: Kinetics, Isotherms and Influencing Factors. Environ. Pollut. 2018, 243, 1550–1557. DOI: 10.1016/j.envpol.2018.09.122.
  • Wang, F.; Shih, K. M.; Li, X. Y. The Partition Behavior of Perfluorooctanesulfonate (PFOS) and Perfluorooctanesulfonamide (FOSA) on Microplastics. Chemosphere (Oxford) 2015, 119, 841–847. DOI: 10.1016/j.chemosphere.2014.08.047.
  • Li, S.; Ma, R.; Zhu, X.; Liu, C.; Li, L.; Yu, Z.; Chen, X.; Li, Z.; Yang, Y. Sorption of Tetrabromobisphenol a Onto Microplastics: Behavior, Mechanisms, and the Effects of Sorbent and Environmental Factors. Ecotoxicol. Environ. Saf. 2021, 210, 111842. DOI: 10.1016/j.ecoenv.2020.111842.
  • Qu, X.; Wang, X.; Zhu, D. The Partitioning of PAHs to Egg Phospholipids Facilitated by Copper and Proton Binding via Cation-π Interactions. Environ. Sci. Technol. 2007, 41, 8321–8327. DOI: 10.1021/es0718117.
  • Curtis, P. J.; Adams, H. E. Dissolved Organic Matter Quantity and Quality from Freshwater and Saltwater Lakes in East-Central Alberta. Biogeochemistry 1995, 30, 59–76. DOI: 10.1007/BF02181040.
  • Liu, F.-F.; Zhao, J.; Wang, S.; Xing, B. Adsorption of Sulfonamides on Reduced Graphene Oxides as Affected by pH and Dissolved Organic Matter. Environ. Pollut. 2016, 210, 85–93. DOI: 10.1016/j.envpol.2015.11.053.
  • ter Laak, T. L.; Durjava, M.; Struijs, J.; Hermens, J. L. M. Solid Phase Dosing and Sampling Technique to Determine Partition Coefficients of Hydrophobic Chemicals in Complex Matrixes. Environ. Sci. Technol. 2005, 39, 3736–3742. DOI: 10.1021/es048406p.
  • Treybal, R. E. Mass-Transfer Operations. 3d ed.; McGraw-Hill: New York, NY, 1980.
  • Liao, D.-H.; Zhao, J.-B.; Gregersen, H. Gastrointestinal Tract Modelling in Health and Disease. World J. Gastroenterol. 2009, 15, 169–176. DOI: 10.3748/wjg.15.169.
  • Li, C.; Yu, W.; Wu, P.; Chen, X. D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020, 96, 114–126. DOI: 10.1016/j.tifs.2019.12.015.
  • Turner, A. Mobilisation Kinetics of Hazardous Elements in Marine Plastics Subject to an Avian Physiologically-Based Extraction Test. Environ. Pollut. 2018, 236, 1020–1026. DOI: 10.1016/j.envpol.2018.01.023.
  • Holmes, L. A.; Thompson, R. C.; Turner, A. In Vitro Avian Bioaccessibility of Metals Adsorbed to Microplastic Pellets. Environ. Pollut. 2020, 261, 114107–114107. DOI: 10.1016/j.envpol.2020.114107.
  • Smith, E. C.; Turner, A. Mobilisation Kinetics of Br, Cd, Cr, Hg, Pb and Sb in Microplastics Exposed to Simulated, Dietary-Adapted Digestive Conditions of Seabirds. Sci. Total Environ. 2020, 733, 138802–138802. DOI: 10.1016/j.scitotenv.2020.138802.
  • Trujillo-Rodríguez, M. J.; Gomila, R. M.; Martorell, G.; Miró, M. Microscale Extraction versus Conventional Approaches for Handling Gastrointestinal Extracts in Oral Bioaccessibility Assays of Endocrine Disrupting Compounds from Microplastic Contaminated Beach Sand. Environ. Pollut. 2021, 272, 115992–115992. DOI: 10.1016/j.envpol.2020.115992.
  • USEPA, D. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Washington US: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 2002, pp. 6–10.
  • Federal Contaminated Site Risk Assessment in Canada. Part I, Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA) Version 2.0. Rev. 2012. ed.; Health Canada: Ottawa, Canada, 2012.
  • Parliament, E. Directive 2009/48/EC of the European Parliament and of the Council of 18 June 2009 on the Safety of Toys. Off. J. Eur. Union 2009, 170, 1–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.