Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 3
182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photocatalytic treatment of real liquid effluent from hydrothermal carbonization of agricultural waste using metal doped TiO2/UV system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 246-255 | Received 26 Jul 2022, Accepted 15 Feb 2023, Published online: 01 Mar 2023

References

  • Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renewable Sustainable Energy Rev. 2018, 90, 223–247. DOI: 10.1016/j.rser.2018.03.071.
  • Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuel Bioprod. Bior. 2010, 4, 160–177. DOI: 10.1002/bbb.198.
  • Urbanowska, A.; Kabsch-Korbutowicz, M.; Wnukowski, M.; Seruga, P.; Baranowski, M.; Pawlak-Kruczek, H.; Serafin-Tkaczuk, M.; Krochmalny, K.; Niedzwiecki, L. Treatment of Liquid by-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation. Energies 2020, 13, 262. DOI: 10.3390/en13010262.
  • Weide, T.; Brügging, E.; Wetter, C. Anaerobic and Aerobic Degradation of Wastewater from Hydrothermal Carbonization (HTC) in a Continuous, Three-Stage and Semi-Industrial System. J. Environ. Chem. Eng. 2019, 7, 102912. DOI: 10.1016/j.jece.2019.102912.
  • Campbell, B. S.; Thorpe, R. B.; Peus, D.; Lee, J. Anaerobic Digestion of Untreated and Treated Process Water from the Hydrothermal Carbonisation of Spent Coffee Grounds. Chemosphere 2022, 293, 133529. DOI: 10.1016/j.chemosphere.2022.133529.
  • Mahy, J. G.; Wolfs, C.; Vreuls, C.; Drot, S.; Dircks, S.; Boergers, A.; Tuerk, J.; Hermans, S.; Lambert, S. D. Advanced Oxidation Processes for Waste Water Treatment: From Laboratory-Scale Model Water to on-Site Real Waste Water. Environ. Technol. 2021, 42, 3974–3986. DOI: 10.1080/09593330.2020.1797894.
  • Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean Prod. 2020, 268, 121725. DOI: 10.1016/j.jclepro.2020.121725.
  • Solís, R. R.; Rivas, F. J.; Ferreira, L. C.; Pirra, A.; Peres, J. A. Integrated Aerobic Biological–Chemical Treatment of Winery Wastewater Diluted with Urban Wastewater. LED-Based Photocatalysis in the Presence of Monoperoxysulfate. J. Environ. Sci. Health, Part A 2018, 53, 124–131. DOI: 10.1080/10934529.2017.1377584.
  • Rueda-Marquez, J. J.; Levchuk, I.; Ibañez, P. F.; Sillanpää, M. A Critical Review on Application of Photocatalysis for Toxicity Reduction of Real Wastewaters. J. Clean Prod. 2020, 258, 120694. DOI: 10.1016/j.jclepro.2020.120694.
  • Sahoo, C.; Gupta, A. K. Characterization and Photocatalytic Performance Evaluation of Various Metal Ion-Doped Microstructured TiO2 under UV and Visible Light. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2015, 50, 659–668. DOI: 10.1080/10934529.2015.1011958.
  • Wang, Y.; He, Y.; Lai, Q.; Fan, M. Review of the Progress in Preparing Nano TiO2: An Important Environmental Engineering Material. J. Environ. Sci. 2014, 26, 2139–2177. DOI: 10.1016/j.jes.2014.09.023.
  • Jiang, Q.; Liu, J.; Qi, T.; Liu, Y. Enhanced Visible-Light Photocatalytic Activity and Antibacterial Behaviour on Fluorine and Graphene Synergistically Modified TiO2 Nanocomposite for Wastewater Treatment. Environ. Technol. 2022, 43, 3821–3834. DOI:10.1080/09593330.2021.1936198
  • Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO2: The Effect of Doping Elements on Photocatalytic Activity. Mater. Adv. 2020, 1, 1193–1201. DOI: 10.1039/D0MA00171F.
  • Tseng, L.-T.; Luo, X.; Bao, N.; Ding, J.; Li, S.; Yi, J. Structures and Properties of Transition-Metal-Doped TiO2 Nanorods. Mater. Lett. 2016, 170, 142–146. DOI: 10.1016/j.matlet.2016.02.021.
  • Sahoo, C.; Gupta, A. K.; Pillai, I. M. S. Heterogeneous Photocatalysis of Real Textile Wastewater: Evaluation of Reaction Kinetics and Characterization. J. Environ. Sci. Health, Part A 2012, 47, 2109–2119. DOI: 10.1080/10934529.2012.695996.
  • Zhao, Y. F.; Li, C.; Lu, S.; Yan, L. J.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J. Effects of Oxygen Vacancy on 3d Transition-Metal Doped Anatase TiO2: First Principles Calculations. Chem. Phys. Lett. 2016, 647, 36–41. DOI: 10.1016/j.cplett.2016.01.040.
  • Shukla, S.; Pandey, H.; Singh, P.; Tiwari, A. K.; Baranwal, V.; Pandey, A. C. Synergistic Impact of Photocatalyst and Dopants on Pharmaceutical-Polluted Waste Water Treatment: A Review. Environ. Pollut. Bioavail. 2021, 33, 347–364. DOI: 10.1080/26395940.2021.1987843.
  • Sescu, A. M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water 2020, 13, 19. DOI: 10.3390/w13010019.
  • Alotaibi, A. M.; Williamson, B. A. D.; Sathasivam, S.; Kafizas, A.; Alqahtani, M.; Sotelo-Vazquez, C.; Buckeridge, J.; Wu, J.; Nair, S. P.; Scanlon, D. O.; Parkin, I. P. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment. ACS Appl. Mater. Interfaces 2020, 12, 15348–15361. DOI: 10.1021/acsami.9b22056.
  • Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Gallardo, J. J.; Blanco, G.; Martín-Calleja, J. A Route for the Synthesis of Cu-Doped TiO2 Nanoparticles with a Very Low Band Gap. Chem. Phys. Lett. 2013, 571, 49–53. DOI: 10.1016/j.cplett.2013.04.007.
  • Ramírez-Sánchez, I. M.; Máynez-Navarro, O. D.; Bandala, E. R. Degradation of Emerging Contaminants Using Fe-Doped TiO2 under UV and Visible Radiation. In: Prasad R, Karchiyappan T, editors. Advanced Research in Nanosciences for Water Technology. Cham: Springer International Publishing, 2019; pp. 263–285
  • Waghchaure, R. H.; Koli, P. B.; Adole, V. A.; Jagdale, B. S. Exploration of Photocatalytic Performance of TiO2, 5% Ni/TiO2, and 5% Fe/TiO2 for Degradation of Eosine Blue Dye: Comparative Study. Res. Chem. 2022, 4, 100488. DOI: 10.1016/j.rechem.2022.100488.
  • Surendra, B.; Raju, B. M.; Onesimus, K. N. S.; Choudhary, G. L.; Paul, P. F.; Vangalapati, M. Synthesis and Characterization of Ni Doped TiO2 Nanoparticles and Its Application for the Degradation of Malathion. Mater. Today: Proc. 2020, 26, 1091–1095. DOI: 10.1016/j.matpr.2020.02.216.
  • Samaksaman, U.; Pattaraprakorn, W.; Neramittagapong, A.; Kanchanatip, E. Solid Fuel Production from Macadamia Nut Shell: effect of Hydrothermal Carbonization Conditions on Fuel Characteristics. Biomass Convers. Biorefin. 2023, 13, 2225–2232. DOI: 10.1007/s13399-021-01330-2
  • Barboux-Doeuff, S.; Sanchez, C. Synthesis and Characterization of Titanium Oxide-Based Gels Synthesized from Acetate Modified Titanium Butoxide Precursors. Mater. Res. Bull. 1994, 29, 1–13. DOI: 10.1016/0025-5408(94)90099-X.
  • Unal, F. A.; Ok, S.; Unal, M.; Topal, S.; Cellat, K.; Şen, F. Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells. J. Mol. Liq. 2020, 299, 112177. DOI: 10.1016/j.molliq.2019.112177.
  • Hampel, B.; Pap, Z.; Sapi, A.; Szamosvolgyi, A.; Baia, L.; Hernadi, K. Application of TiO2-Cu Composites in Photocatalytic Degradation Different Pollutants and Hydrogen Production. Catalysts 2020, 10, 85. DOI: 10.3390/catal10010085.
  • Richardson, J. T.; Scates, R.; Twigg, M. V. X-Ray Diffraction Study of Nickel Oxide Reduction by Hydrogen. Appl. Catal, A 2003, 246, 137–150. DOI: 10.1016/S0926-860X(02)00669-5.
  • Zedan, A. F.; Mohamed, A. T.; El-Shall, M. S.; AlQaradawi, S. Y.; AlJaber, A. S. Tailoring the Reducibility and Catalytic Activity of CuO Nanoparticles for Low Temperature CO Oxidation. RSC Adv. 2018, 8, 19499–19511. DOI: 10.1039/c8ra03623c.
  • Razali, N. A.; Othman, S. A. Potential Dopant in Photocatalysis Process for Wastewater Treatment-A Review. IOP Conf. Ser: Earth Environ. Sci. 2021, 736, 012059.
  • Parsaei-Khomami, A.; Mousavi, M.; Habibi, M. M.; Shirzad, K.; Ghasemi, J. B.; Wang, L.; Yu, J.; Yu, H.; Li, X. Highly Efficient Visible Light Photoelectrochemical Degradation of Ciprofloxacin and Azo Dyes by Novel TiO2/AgBiS2 Photoelectrocatalyst. Solid State Sci. 2022, 134, 107044. DOI: 10.1016/j.solidstatesciences.2022.107044.
  • Li, D.; Song, H.; Meng, X.; Shen, T.; Sun, J.; Han, W.; Wang, X. Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO(2). Nanomaterials (Basel, Switzerland). 2020, 10, 546. DOI: 10.3390/nano10030546.
  • Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is Anatase a Better Photocatalyst than Rutile? - Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2014, 4, 4043. DOI: 10.1038/srep04043.
  • Wan, L.; Sheng, J.; Chen, H.; Xu, Y. Different Recycle Behavior of Cu2+ and Fe3+ Ions for Phenol Photodegradation over TiO2 and WO3. J. Hazard Mater. 2013, 262, 114–120. DOI: 10.1016/j.jhazmat.2013.08.002.
  • Hemmati Borji, S.; Nasseri, S.; Mahvi, A. H.; Nabizadeh, R.; Javadi, A. H. Investigation of Photocatalytic Degradation of Phenol by Fe(III)-Doped TiO2 and TiO2 Nanoparticles. J. Environ. Health Sci. Eng. 2014, 12, 101. Epub 2014/08/12.
  • Mrowetz, M.; Selli, E. H2O2 Evolution during the Photocatalytic Degradation of Organic Molecules on Fluorinated TiO2. New J. Chem. 2006, 30, 108–114. DOI: 10.1039/B511320B.
  • Wang, T.; Wang, Y.; Lei, J.; Chen, K.-J.; Wang, H. Electrochemically Induced Surface Reconstruction of Ni-Co Oxide Nanosheet Arrays for Hybrid Supercapacitors. Exploration 2021, 1, 20210178. DOI: 10.1002/EXP.20210178.
  • Rojviroon, O.; Rojviroon, T.; Sirivithayapakorn, S. Study of COD Removal Efficiency from Synthetic Wastewater by Photocatalytic Process. Environ. Eng. Res. 2014, 19, 255–259.
  • Filippo, E.; Carlucci, C.; Capodilupo, A. L.; Perulli, P.; Conciauro, F.; Corrente, G. A.; Gigli, G.; Ciccarella, G. Enhanced Photocatalytic Activity of Pure Anatase Tio2 and Pt-Tio2 Nanoparticles Synthesized by Green Microwave Assisted Route. Mater. Res. 2015, 18, 473–481.
  • Bakbolat, B.; Daulbayev, C.; Sultanov, F.; Beissenov, R.; Umirzakov, A.; Mereke, A.; Bekbaev, A.; Chuprakov, I. Recent Developments of TiO2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. Nanomaterials 2020, 10, 1790.
  • Kanchanatip, E.; Grisdanurak, N.; Thongruang, R.; Neramittagapong, A. Degradation of Paraquat under Visible Light over Fullerene Modified V-TiO2. React. Kinet. Mech. Catal. 2011, 103, 227–237.
  • Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A. A.; Amin, M. O.; Madkour, M. The Effect of Surface Charge on Photocatalytic Degradation of Methylene Blue Dye Using Chargeable Titania Nanoparticles. Sci. Rep. 2018, 8, 7104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.