Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 5
321
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluation of ciprofloxacin (CIP) and clarithromycin (CLA) adsorption with weathered PVC microplastics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 498-505 | Received 21 Nov 2022, Accepted 17 Mar 2023, Published online: 18 Apr 2023

References

  • Kümmerer, K. Antibiotics in the Aquatic Environment – A Review – Part II. Chemosphere 2009, 75, 435–441. DOI: 10.1016/j.chemosphere.2008.12.006.
  • Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and Antibiotic Resistance Genes in Global Lakes: A Review and Meta-Analysis. Environ. Int. 2018, 116, 60–73. DOI: 10.1016/j.envint.2018.04.011.
  • Huang, L.; Mo, Y.; Wu, Z.; Rad, S.; Song, X.; Zeng, H.; Bashir, S.; Kang, B.; Chen, Z. Occurrence, Distribution, and Health Risk Assessment of Quinolone Antibiotics in Water, Sediment, and Fish Species of Qingshitan Reservoir, South China. Sci. Rep. 2020, 10, 1–18. DOI: 10.1038/s41598-020-72324-9.
  • Guo, X.; Feng, C.; Gu, E.; Tian, C.; Shen, Z. Spatial Distribution, Source Apportionment and Risk Assessment of Antibiotics in the Surface Water and Sediments of the Yangtze Estuary. Sci. Total Environ. 2019, 671, 548–557. DOI: 10.1016/j.scitotenv.2019.03.393.
  • Li, L.; Zhao, X.; Liu, D.; Song, K.; Liu, Q.; He, Y. Occurrence and Ecological Risk Assessment of PPCPs in Typical Inflow Rivers of Taihu Lake, China. J. Environ. Manage. 2021, 285, 112176. DOI: 10.1016/j.jenvman.2021.112176.
  • Doorslaer, X. V.; Dewulf, J.; Langenhove, H. V.; Demeestere, K. Fluoroquinolone Antibiotics: An Emerging Class of Environmental Micropollutants. Sci. Total Environ. 2014, 500–501, 250–269.
  • Tran, N. H.; Hoang, L.; Nghiem, L. D.; Nguyen, N. M. H.; Ngo, H. H.; Guo, W.; Trinh, Q. T.; Mai, N. H.; Chen, H.; Nguyen, D. D.; et al. Occurrence and Risk Assessment of Multiple Classes of Antibiotics in Urban Canals and Lakes in Hanoi, Vietnam. Sci. Total Environ. 2019, 692, 157–174. DOI: 10.1016/j.scitotenv.2019.07.092.
  • Yu, F.; Sun, Y.; Yang, M.; Ma, J. Adsorption Mechanism and Effect of Moisture Contents on Ciprofloxacin Removal by Three-Dimensional Porous Graphene Hydrogel. J. Hazard Mater. 2019, 374, 195–202. DOI: 10.1016/j.jhazmat.2019.04.021.
  • Estrada-Arriaga, E. B.; Cortés-Muñoz, J. E.; González-Herrera, A.; Calderón-Mólgora, C. G.; Lourdes Rivera-Huerta, M. D.; Ramírez-Camperos, E.; Montellano-Palacios, L.; Gelover-Santiago, S. L.; Pérez-Castrejón, S.; Cardoso-Vigueros, L.; et al. Assessment of Full-Scale Biological Nutrient Removal Systems Upgraded with Physico-Chemical Processes for the Removal of Emerging Pollutants Present in Wastewaters from Mexico. Sci. Total Environ. 2016, 571, 1172–1182. DOI: 10.1016/j.scitotenv.2016.07.118.
  • Jia, Y.; Khanal, S. K.; Shu, H.; Zhang, H.; Chen, G. H.; Lu, H. Ciprofloxacin Degradation in Anaerobic Sulfate-Reducing Bacteria (SRB) Sludge System: Mechanism and Pathways. Water Res. 2018, 136, 64–74. DOI: 10.1016/j.watres.2018.02.057.
  • Das, S.; Barui, A.; Adak, A. Montmorillonite Impregnated Electrospun Cellulose Acetate Nanofiber Sorptive Membrane for Ciprofloxacin Removal from Wastewater. J. Water Process. Eng. 2020, 37, 101497. DOI: 10.1016/j.jwpe.2020.101497.
  • Mondal, S. K.; Saha, A. K.; Sinha, A. Removal of Ciprofloxacin Using Modified Advanced Oxidation Processes: Kinetics, Pathways and Process Optimization. J. Clean. Prod. 2018, 171, 1203–1214. DOI: 10.1016/j.jclepro.2017.10.091.
  • Bhattacharya, P.; Mukherjee, D.; Dey, S.; Ghosh, S.; Banerjee, S. Development and Performance Evaluation of a Novel CuO/TiO2 Ceramic Ultrafiltration Membrane for Ciprofloxacin Removal. Mater. Chem. Phys. 2019, 229, 106–116. DOI: 10.1016/j.matchemphys.2019.02.094.
  • Dal Conti-Lampert, A.; Testolin, R. C.; Somensi, C. A.; Almerindo, G. I.; Wagner, T. M.; Gerlach, O. M. S.; Sanches-Simões, E.; Ariente-Neto, R.; González, S. Y. G.; Radetski, C. M. Antibiotic Degradation and Mineralization: Efficiency Increase on Combining Different Chemical Treatment Processes. J. Environ. Sci. Health A 2022, 57, 987–996. DOI: 10.1080/10934529.2022.2135343.
  • Wang, N.; Xiao, W.; Niu, B.; Duan, W.; Zhou, L.; Zheng, Y. Highly Efficient Adsorption of Fluoroquinolone Antibiotics Using Chitosan Derived Granular Hydrogel with 3D Structure. J. Mol. Liq. 2019, 281, 307–314. DOI: 10.1016/j.molliq.2019.02.061.
  • Lu, D.; Xu, S.; Qiu, W.; Sun, Y.; Liu, X.; Yang, J.; Ma, J. Adsorption and Desorption Behaviors of Antibiotic Ciprofloxacin on Functionalized Spherical MCM-41 for Water Treatment. J. Clean. Prod. 2020, 264, 121644. DOI: 10.1016/j.jclepro.2020.121644.
  • Ritchi, H.; Roser, M. Plastic Pollution. https://plasticseurope.org/media/major-step-towards-zero-plastic-pollution-future-plastics-europe-welcomes-global-plastics-agreement/ (accessed Nov 21, 2022).
  • OECD. Global Plastics Outlook. https://www.oecd-ilibrary.org/sites/46f63517-en/index.html?itemId=/content/component/46f63517-en (accessed Mar 5, 2023).
  • Zhang, K.; Hamidian, A. H.; Tubić, A.; Zhang, Y.; Fang, J. K. H.; Wu, C.; Lam, P. K. S. Understanding Plastic Degradation and Microplastic Formation in the Environment: A Review. Environ. Pollut. 2021, 274, 116554. DOI: 10.1016/j.envpol.2021.116554.
  • Rensburg, M. L.; Van; Nkomo, S. L.; Dube, T. The ‘Plastic Waste Era’; Social Perceptions towards Single-Use Plastic Consumption and Impacts on the Marine Environment in Durban, South Africa. Appl. Geogr. 2020, 114, 102132. DOI: 10.1016/j.apgeog.2019.102132.
  • Patrício Silva, A. L.; Prata, J. C.; Walker, T. R.; Duarte, A. C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased Plastic Pollution Due to COVID-19 Pandemic: Challenges and Recommendations. Chem. Eng. J. 2021, 405, 126683. DOI: 10.1016/j.cej.2020.126683.
  • Galgani, F.; Pinto Da Costa, J. The Role of Legislation, Regulatory Initiatives and Guidelines on the Control of Plastic Pollution. Front. Environ. Sci. 2020, 8, 104.
  • Guo, X.; Chen, C.; Wang, J. Sorption of Sulfamethoxazole onto Six Types of Microplastics. Chemosphere 2019, 228, 300–308. DOI: 10.1016/j.chemosphere.2019.04.155.
  • Guo, X.; Liu, Y.; Wang, J. Sorption of Sulfamethazine onto Different Types of Microplastics: A Combined Experimental and Molecular Dynamics Simulation Study. Mar. Pollut. Bull. 2019, 145, 547–554. DOI: 10.1016/j.marpolbul.2019.06.063.
  • Li, J.; Zhang, K.; Zhang, H. Adsorption of Antibiotics on Microplastics. Environ. Pollut. 2018, 237, 460–467. DOI: 10.1016/j.envpol.2018.02.050.
  • Tang, S.; Lin, L.; Wang, X.; Feng, A.; Yu, A. Pb(II) Uptake onto Nylon Microplastics: Interaction Mechanism and Adsorption Performance. J. Hazard Mater. 2020, 386, 121960. DOI: 10.1016/j.jhazmat.2019.121960.
  • Fu, Q.; Tan, X.; Ye, S.; Ma, L.; Gu, Y.; Zhang, P.; Chen, Q.; Yang, Y.; Tang, Y. Mechanism Analysis of Heavy Metal Lead Captured by Natural-Aged Microplastics. Chemosphere 2021, 270, 128624. DOI: 10.1016/j.chemosphere.2020.128624.
  • Guo, X.; Wang, J. Sorption of Antibiotics onto Aged Microplastics in Freshwater and Seawater. Mar. Pollut. Bull. 2019, 149, 110511. DOI: 10.1016/j.marpolbul.2019.110511.
  • Bakir, A.; Rowland, S. J.; Thompson, R. C. Competitive Sorption of Persistent Organic Pollutants onto Microplastics in the Marine Environment. Mar. Pollut. Bull. 2012, 64, 2782–2789. DOI: 10.1016/j.marpolbul.2012.09.010.
  • Hüffer, T.; Weniger, A. K.; Hofmann, T. Sorption of Organic Compounds by Aged Polystyrene Microplastic Particles. Environ. Pollut. 2018, 236, 218–225. DOI: 10.1016/j.envpol.2018.01.022.
  • Li, Y.; Li, M.; Li, Z.; Yang, L.; Liu, X. Effects of Particle Size and Solution Chemistry on Triclosan Sorption on Polystyrene Microplastic. Chemosphere 2019, 231, 308–314. DOI: 10.1016/j.chemosphere.2019.05.116.
  • Dao, T. H.; Nguyen, N. T.; Nguyen, M. N.; Ngo, C. L.; Luong, N. H.; Le, D. B.; Pham, T. D. Adsorption Behavior of Polyelectrolyte onto Alumina and Application in Ciprofloxacin Removal. Polymers 2020, 12, 1554. DOI: 10.3390/polym12071554.
  • Duan, W.; Wang, N.; Xiao, W.; Zhao, Y.; Zheng, Y. Ciprofloxacin Adsorption onto Different Micro-Structured Tourmaline, Halloysite and Biotite. J. Mol. Liq. 2018, 269, 874–881. DOI: 10.1016/j.molliq.2018.08.051.
  • Wang, F.; Yang, W.; Cheng, P.; Zhang, S.; Zhang, S.; Jiao, W.; Sun, Y. Adsorption Characteristics of Cadmium onto Microplastics from Aqueous Solutions. Chemosphere 2019, 235, 1073–1080. DOI: 10.1016/j.chemosphere.2019.06.196.
  • Yu, F.; Yang, C.; Huang, G.; Zhou, T.; Zhao, Y.; Ma, J. Interfacial Interaction between Diverse Microplastics and Tetracycline by Adsorption in an Aqueous Solution. Sci. Total Environ. 2020, 721, 137729. DOI: 10.1016/j.scitotenv.2020.137729.
  • Souza, A. d.; Santos, A. L.; Araújo, D. S.; Magalhães, R. d B.; Rocha, T. L. Micro(Nano)Plastics as a Vector of Pharmaceuticals in Aquatic Ecosystem: Historical Review and Future Trends. J. Hazard. Mater. Adv. 2022, 6, 100068. DOI: 10.1016/j.hazadv.2022.100068.
  • Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption Behavior of Organic Pollutants on Microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. DOI: 10.1016/j.ecoenv.2021.112207.
  • Duan, J.; Bolan, N.; Li, Y.; Ding, S.; Atugoda, T.; Vithanage, M.; Sarkar, B.; Tsang, D. C. W.; Kirkham, M. B. Weathering of Microplastics and Interaction with Other Coexisting Constituents in Terrestrial and Aquatic Environments. Water Res. 2021, 196, 117011. DOI: 10.1016/j.watres.2021.117011.
  • Atugoda, T.; Wijesekara, H.; Werellagama, D.; Jinadasa, K.; Bolan, N. S.; Vithanage, M. Adsorptive Interaction of Antibiotic Ciprofloxacin on Polyethylene Microplastics: Implications for Vector Transport in Water. Environ. Technol. Innov. 2020, 19, 100971. DOI: 10.1016/j.eti.2020.100971.
  • Yilimulati, M.; Wang, L.; Ma, X.; Yang, C.; Habibul, N. Adsorption of Ciprofloxacin to Functionalized Nano-Sized Polystyrene Plastic: Kinetics, Thermochemistry and Toxicity. Sci. Total Environ. 2021, 750, 142370. DOI: 10.1016/j.scitotenv.2020.142370.
  • González-Pleiter, M.; Pedrouzo-Rodríguez, A.; Verdú, I.; Leganés, F.; Marco, E.; Rosal, R.; Fernández-Piñas, F. Microplastics as Vectors of the Antibiotics Azithromycin and Clarithromycin: Effects towards Freshwater Microalgae. Chemosphere 2021, 268, 128824. DOI: 10.1016/j.chemosphere.2020.128824.
  • Rasmussen, L. A.; Iordachescu, L.; Tumlin, S.; Vollertsen, J. A Complete Mass Balance for Plastics in a Wastewater Treatment plant - Macroplastics Contributes More than Microplastics. Water Res. 2021, 201, 117307. DOI: 10.1016/j.watres.2021.117307.
  • Vardar, S.; Onay, T. T.; Demirel, B.; Kideys, A. E. Evaluation of Microplastics Removal Efficiency at a Wastewater Treatment Plant Discharging to the Sea of Marmara. Environ. Pollut. 2021, 289, 117862. DOI: 10.1016/j.envpol.2021.117862.
  • Fu, J.; Li, Y.; Peng, L.; Gao, W.; Wang, G. Distinct Chemical Adsorption Behaviors of Sulfanilamide as a Model Antibiotic onto Weathered Microplastics in Complex Systems. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129337. DOI: 10.1016/j.colsurfa.2022.129337.
  • Danalıoğlu, S. T.; Bayazit, ŞS.; Kerkez, Ö.; Alhogbi, B. G.; Abdel Salam, M. Removal of Ciprofloxacin from Aqueous Solution Using Humic Acid- and Levulinic Acid- Coated Fe3O4 Nanoparticles. Chem. Eng. Res. Des. 2017, 123, 259–267. DOI: 10.1016/j.cherd.2017.05.018.
  • Öztürk, D.; Mıhçıokur, H. Sucul ortamdan amoksisilin gideriminde hibrit adsorpsiyon/oksidasyon performansının değerlendirilmesi Removal of Amoxicillin in Aqueous Media by Hybrid Adsorption/Oxidation. Bilim. Derg./NOHU J. Eng. Sci. 2022, 11, 31–038.
  • Mihciokur, H.; Oguz, M. Removal of Oxytetracycline and Determining Its Biosorption Properties on Aerobic Granular Sludge. Environ. Toxicol. Pharmacol. 2016, 46, 174–182. DOI: 10.1016/j.etap.2016.07.017.
  • Azarpira, H.; Balarak, D. Rice Husk as a Biosorbent for Antibiotic Metronidazole Removal: Isotherm Studies and Model Validation. Int. J. Chemtech. Res. 2016, 9, 566–573.
  • Merck. IR Spectrum Table & Chart. https://www.sigmaaldrich.com/TR/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table (accessed Nov 2022).
  • Öztürk, D.; Mihçiokur, H. Production of Innovative Magnetic Adsorbent Fe3O4@ PEI® Tween 85 and Removal of Oxytetracycline from Aqueous Media. Sep. Sci. Technol. 2022, 57, 1030–1042. DOI: 10.1080/01496395.2021.1962911.
  • Ullah, S.; Bustam, M. A.; Assiri, M. A.; Al-Sehemi, A. G.; Gonfa, G.; Mukhtar, A.; Abdul Kareem, F. A.; Ayoub, M.; Saqib, S.; Mellon, N. B. Synthesis and Characterization of Mesoporous MOF UMCM-1 for CO2/CH4 Adsorption; an Experimental, Isotherm Modeling and Thermodynamic Study. Micropor. Mesopor. Mater. 2020, 294, 109844. DOI: 10.1016/j.micromeso.2019.109844.
  • Bhatt, A. S.; Sakaria, P. L.; Vasudevan, M.; Pawar, R. R.; Sudheesh, N.; Bajaj, H. C.; Mody, H. M. Adsorption of an Anionic Dye from Aqueous Medium by Organoclays: Equilibrium Modeling, Kinetic and Thermodynamic Exploration. RSC Adv. 2012, 2, 8663–8671. DOI: 10.1039/c2ra20347b.
  • Xu, J.; Hu, Y. Y.; Li, X. Y.; Chen, J. J.; Sheng, G. P. Rapidly Probing the Interaction between Sulfamethazine Antibiotics and Fulvic Acids. Environ. Pollut. 2018, 243, 752–757. DOI: 10.1016/j.envpol.2018.09.002.
  • Li, M. f.; Liu, Y. g.; Liu, S. b.; Zeng, G. m.; Hu, X. j.; Tan, X. f.; Jiang, L. h.; Liu, N.; Wen, J.; Liu.; X.; Hui. Performance of Magnetic Graphene Oxide/Diethylenetriaminepentaacetic Acid Nanocomposite for the Tetracycline and Ciprofloxacin Adsorption in Single and Binary Systems. J. Colloid Interface Sci. 2018, 521, 150–159. DOI: 10.1016/j.jcis.2018.03.003.
  • Wu, C. H. Adsorption of Reactive Dye onto Carbon Nanotubes: Equilibrium, Kinetics and Thermodynamics. J. Hazard Mater. 2007, 144, 93–100. DOI: 10.1016/j.jhazmat.2006.09.083.
  • Liu, G.; Zhu, Z.; Yang, Y.; Sun, Y.; Yu, F.; Ma, J. Sorption Behavior and Mechanism of Hydrophilic Organic Chemicals to Virgin and Aged Microplastics in Freshwater and Seawater. Environ. Pollut. 2019, 246, 26–33. DOI: 10.1016/j.envpol.2018.11.100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.