Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 5
136
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of the MnO2-Fe3O4 catalyst support on amorphous silica: a new Fenton’s reagent in the degradation of the reactive blue-19 in aqueous solution

, &
Pages 506-514 | Received 28 Dec 2022, Accepted 24 Mar 2023, Published online: 06 Apr 2023

References

  • Xu, M.; Wu, C.; Zhou, Y. Advancements in the Fenton Process for Wastewater Treatment. In Advanced Oxidation Processes - Applications, Trends, and Prospects; Bustillo-Lecompte, C., Ed.; IntechOpen: London, UK, 2020. DOI: 10.5772/intechopen.90256.
  • Fenton, H. J. H. LXXIII Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. DOI: 10.1039/CT8946500899.
  • Shukla, P.; Wang, S.; Sun, H.; Ang, H. M.; Tadé, M. Adsorption and Heterogeneous Advanced Oxidation of Phenolic Contaminants Using Fe Loaded Mesoporous SBA-15 and H2O2. Chem. Eng. J. 2010, 164, 255–260. DOI: 10.1016/j.cej.2010.08.061.
  • Cai, X.; Zhang, Y.; Hu, H.; Huang, Z.; Yin, Y.; Liang, X.; Qin, Y.; Liang, J. Valorization of Manganese Residue to Prepare a Highly Stable and Active Fe3O4@SiO2/Starch-Derived Carbon Composite for Catalytic Degradation of Dye Waste Water. J. Clean. Prod. 2020, 258, 120741. DOI: 10.1016/j.jclepro.2020.120741.
  • Li, Y.; Zhang, F. S. Catalytic Oxidation of Methyl Orange by an Amorphous FeOOH Catalyst Developed from a High Iron-Containing Fly Ash. Chem. Eng. J. 2010, 158, 148–153. DOI: 10.1016/j.cej.2009.12.021.
  • Zhang, W.; Yang, Z.; Wang, X.; Zhang, Y.; Wen, X.; Yang, S. Large-Scale Synthesis of β-MnO2 Nanorods and Their Rapid and Efficient Catalytic Oxidation of Methylene Blue Dye. Catal. Commun. 2006, 7, 408–412. DOI: 10.1016/j.catcom.2005.12.008.
  • Li, Z.; Tang, X.; Liu, K.; Huang, J.; Xu, Y.; Peng, Q.; Ao, M. Synthesis of a MnO2/Fe3O4/Diatomite Nanocomposite as an Efficient Heterogeneous Fenton-like Catalyst for Methylene Blue Degradation. Beilstein J. Nanotechnol. 2018, 9, 1940–1950. DOI: 10.3762/bjnano.9.185.
  • Vu, A. T.; Xuan, T. N.; Lee, C. H. Preparation of Mesoporous Fe2O3·SiO2 Composite from Rice Husk as an Efficient Heterogeneous Fenton-like Catalyst for Degradation of Organic Dyes. J. Water Process Eng. 2019, 28, 169–180. DOI: 10.1016/j.jwpe.2019.01.019.
  • Almazán-Sánchez, P. T.; Solache-Ríos, M. J.; Linares-Hernández, I.; Martínez-Miranda, V. Adsorption-Regeneration by Heterogeneous Fenton Process Using Modified Carbon and Clay Materials for Removal of Indigo Blue. Environ. Technol. 2016, 37, 1843–1856. DOI: 10.1080/09593330.2015.1133718.
  • Meijide, J.; Rodríguez, S.; Sanromán, M. A.; Pazos, M. Comprehensive Solution for Acetamiprid Degradation: Combined Electro-Fenton and Adsorption Process. J. Electroanal. Chem. 2018, 808, 446–454. DOI: 10.1016/j.jelechem.2017.05.012.
  • Drumm, F. C.; de Oliveira, J. S.; Foletto, E. L.; Dotto, G. L.; Moraes Flores, E. M.; Peters Enders, M. S.; Müller, E. I.; Janh, S. L. Response Surface Methodology Approach for the Optimization of Tartrazine Removal by Heterogeneous Photo-Fenton Process Using Mesostructured Fe2O3-Suppoted ZSM-5 Prepared by Chitin-Templating. Chem. Eng. Commun. 2018, 205, 445–455. DOI: 10.1080/00986445.2017.1402009.
  • Sohrabi, M. R.; Khavaran, A.; Shariati, S.; Shariati, S. Removal of Carmoisine Edible Dye by Fenton and Photo Fenton Processes Using Taguchi Orthogonal Array Design. Arab. J. Chem. 2017, 10, S3523–S3531. DOI: 10.1016/j.arabjc.2014.02.019.
  • Jain, B.; Singh, A. K.; Kim, H.; Lichtfouse, E.; Sharma, V. K. Treatment of Organic Pollutants by Homogeneous and Heterogeneous Fenton Reaction Processes. Environ. Chem. Lett. 2018, 16, 947–967. DOI: 10.1007/s10311-018-0738-3.
  • Bautista, P.; Mohedano, A. F.; Casas, J. A.; Zazo, J. A.; Rodriguez, J. J. An Overview of the Application of Fenton Oxidation to Industrial Wastewaters Treatment. J. Chem. Technol. Biotechnol. 2008, 83, 1323–1338. DOI: 10.1002/jctb.1988.
  • Silva, R. F.; Silva, G. L.; Silva, R. O. Photo-Fenton Process: Degradation of Drimaren Red CL-5B Dye and Ecotoxicity Study of Jeans Laundry Effluent. J. Environ. Sci. Pollut. Res. 2017, 3, 219–224.
  • Pal, P. Industry-Specific Water Treatment. In Industrial Water Treatment Process Technology; Butterworth-Heinemann: Oxford, UK, 2017; pp 243–511. DOI: 10.1016/b978-0-12-810391-3.00006-0.
  • Tang, X.; Huang, J.; Liu, K.; Feng, Q.; Li, Z.; Ao, M. Synthesis of Magnetically Separable MnO2/Fe3O4/Silica Nanofiber Composite with Enhanced Fenton-like Catalytic Activity for Degradation of Acid Red 73. Surf. Coatings Technol. 2018, 354, 18–27. DOI: 10.1016/j.surfcoat.2018.09.011.
  • Sharifi, N.; Nasiri, A.; Silva Martínez, S.; Amiri, H. Synthesis of Fe3O4@Activated Carbon to Treat Metronidazole Effluents by Adsorption and Heterogeneous Fenton with Effluent Bioassay. J. Photochem. Photobiol. A Chem. 2022, 427, 113845. DOI: 10.1016/j.jphotochem.2022.113845.
  • Kim, E. J.; Oh, D.; Lee, C. S.; Gong, J.; Kim, J.; Chang, Y. S. Manganese Oxide Nanorods as a Robust Fenton-like Catalyst at Neutral PH: Crystal Phase-Dependent Behavior. Catal. Today 2017, 282, 71–76. DOI: 10.1016/j.cattod.2016.03.034.
  • Fang, Z. D.; Zhang, K.; Liu, J.; Fan, J. Y.; Zhao, Z. W. Fenton-like Oxidation of Azo Dye in Aqueous Solution Using Magnetic Fe3O4-MnO2 Nanocomposites as Catalysts. Water Sci. Eng. 2017, 10, 326–333. DOI: 10.1016/j.wse.2017.10.005.
  • Peleyeju, M. G.; Mgedle, N.; Viljoen, E. L.; Scurrel, M. S.; Ray, S. C. Irradiation of Fe–Mn@SiO2 with Microwave Energy Enhanced Its Fenton-like Catalytic Activity for the Degradation of Methylene Blue. Res. Chem. Intermed. 2021, 47, 4213–4226. DOI: 10.1007/s11164-021-04526-3.
  • Graf, C. S. Amorphous. In Kirk-Othmer Encyclopedia of Chemical Technology; American Cancer Society: Atlanta, GA, 2018; pp 1–43.
  • Kumar, R. S.; Vinjamur, M.; Mukhopadhyay, M. A Simple Process to Prepare Silica Aerogel Microparticles from Rice Husk Ash. IJCEA 2013, 4, 321–325. DOI: 10.7763/IJCEA.2013.V4.318.
  • Zhang, Q.; Wang, Q.; Wang, S. Efficient Heterogeneous Fenton-like Catalysis of Fe-Doped SAPO-44 Zeolite Synthesized from Bauxite and Rice Husk. Chem. Phys. Lett. 2020, 753, 137598. DOI: 10.1016/j.cplett.2020.137598.
  • Heo, J. N.; Do, J. Y.; Son, N.; Kim, J.; Kim, Y. S.; Hwang, H.; Kang, M. Rapid Removal of Methyl Orange by a UV Fenton-like Reaction Using Magnetically Recyclable Fe-Oxalate Complex Prepared with Rice Husk. J. Ind. Eng. Chem. 2019, 70, 372–379. DOI: 10.1016/j.jiec.2018.10.038.
  • Korobochkin, V. V.; Tu, N. V.; Hieu, N. M. Production of Activated Carbon from Rice Husk Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2016, 43, 012066. DOI: 10.1088/1755-1315/43/1/012066.
  • Hakro, R. A.; Mehdi, M.; Qureshi, R. F.; Mahar, R. B.; Khatri, M.; Ahmed, F.; Khatri, Z.; Kim, I. S. Efficient Removal of Reactive Blue-19 Dye by Co-Electrospun Nanofibers. Mater. Res. Express. 2021, 8, 055502. DOI: 10.1088/2053-1591/abfc7d.
  • Dai, D.; Liang, H.; He, D.; Potgieter, H.; Li, M. Mn-Doped Fe2O3/Diatomite Granular Composite as an Efficient Fenton Catalyst for Rapid Degradation of an Organic Dye in Solution. J. Sol-Gel Sci. Technol. 2021, 97, 329–339. DOI: 10.1007/s10971-020-05452-3.
  • Alothman, Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials (Basel). 2012, 5, 2874–2902. DOI: 10.3390/ma5122874.
  • Feng, Q.; Chen, K.; Ma, D.; Lin, H.; Liu, Z.; Qin, S.; Luo, Y. Synthesis of High Specific Surface Area Silica Aerogel from Rice Husk Ash via Ambient Pressure Drying. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 539, 399–406. DOI: 10.1016/j.colsurfa.2017.12.025.
  • Ghasemzadeh, M. A.; Azimi-Nasrabad, M.; Safaei-Ghomi, J. Fe3O4@SiO2 Nanoparticles: An Efficient, Green and Magnetically Reusable Catalyst for the One-Pot Synthesis of 14-Aryl-14H-Dibenzo[a,i]Xanthene-8,13-Dione Derivatives. Iran. J. Catal 2016, 6, 203–211.
  • Dalvand, A.; Nabizadeh, R.; Reza Ganjali, M.; Khoobi, M.; Nazmara, S.; Hossein Mahvi, A. Modeling of Reactive Blue 19 Azo Dye Removal from Colored Textile Wastewater Using L-Arginine-Functionalized Fe3O4 Nanoparticles: Optimization, Reusability, Kinetic and Equilibrium Studies. J. Magn. Magn. Mater. 2016, 404, 179–189. DOI: 10.1016/j.jmmm.2015.12.040.
  • Gao, M.; Zhang, D.; Li, W.; Chang, J.; Lin, Q.; Xu, D.; Ma, H. Degradation of Methylene Blue in a Heterogeneous Fenton Reaction Catalyzed by Chitosan Crosslinked Ferrous Complex. J. Taiwan Inst. Chem. Eng. 2016, 67, 355–361. DOI: 10.1016/j.jtice.2016.08.010.
  • Paiman, S. H.; Rahman, M. A.; Uchikoshi, T.; Abdullah, N.; Othman, M. H. D.; Jaafar, J.; Abas, K. H.; Ismail, A. F. Functionalization Effect of Fe-Type MOF for Methylene Blue Adsorption. J. Saudi Chem. Soc. 2020, 24, 896–905. DOI: 10.1016/j.jscs.2020.09.006.
  • Chen, X.; Deng, F.; Liu, X.; Cui, K. P.; Weerasooriya, R. Hydrothermal Synthesis of MnO2/Fe(0) Composites from Li-Ion Battery Cathodes for Destructing Sulfadiazine by Photo-Fenton Process. Sci. Total Environ. 2021, 774, 145776. DOI: 10.1016/j.scitotenv.2021.145776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.