Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 7
209
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessing three industrially produced fungi for the bioremediation of diclofenac

, , , , , , & show all
Pages 661-670 | Received 21 Jul 2022, Accepted 12 Apr 2023, Published online: 01 May 2023

References

  • Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes. Environ. Int. 2009, 35, 402–417. DOI: 10.1016/j.envint.2008.07.009.
  • Chefetz, B.; Mualem, T.; Ben-Ar, J. Sorption and Mobility of Pharmaceutical Compounds in Soil Irrigated with Reclaimed Wastewater. Chem 2008, 73, 1335–1343. DOI: 10.1016/j.chemosphere.2008.06.070.
  • Al-Rajab, A. J.; Sabourin, L.; Lapen, D. R.; Topp, E. Dissipation of Triclosan, Triclocarban, Carbamazepine and Naproxen in Agricultural Soil following Surface or Sub-Surface Application of Dewatered Municipal Biosolids. Sci. Total Environ. 2015, 512–513, 480–488. DOI: 10.1016/j.scitotenv.2015.01.075.
  • Almomani, F.; Shawaqfah, M.; Bhosale, R.; Kumar, A. Removal of Emerging Pharmaceuticals from Wastewater by Ozone‐Based Advanced Oxidation Processes. Environ. Prog. Sustain. Energy 2016, 35, 982–995. DOI: 10.1002/ep.12306.
  • Esterhuizen-Londt, M.; Hendel, A. L.; Pflugmacher, S. Mycoremediation of Diclofenac Using Mucor Hiemalis. Environ. Toxicol. Chem. 2017, 99, 795–808. DOI: 10.1080/02772248.2017.1296444.
  • Shukla, A.; Srivastava, S. Emerging Aspects of Bioremediation of Arsenic. In Green Technologies and Environmental Sustainability, 1st ed.; Singh, R., Kumar S. Eds.; Springer International Publishing: Switzerland AG, 2017; pp 395–407
  • Badia-Fabregat, M.; Lucas, D.; Pereira, M. A.; Alves, M.; Pennanen, T.; Fritze, H.; Rodríguez-Mozaz, S.; Barcelo, D.; Vicent, T.; Caminal, G. Continuous Fungal Treatment of Non-Sterile Veterinary Hospital Effluent: Pharmaceuticals Removal and Microbial Community Assessment. Appl. Microbiol. Biotechnol. 2016, 100, 2401–2415. DOI: 10.1007/s00253-015-7105-0.
  • Ellouze, M.; Sayadi, S. White-Rot Fungi, and Their Enzymes as a Biotechnological Tool for Xenobiotic Bioremediation. In Management of Hazardous Wastes, 1st ed.; Saleh H. M., Rehab O. Abdel-Rahman R.O. Eds.; 2016. IntechOpen: The United Kingdom, 2016. DOI: 10.5772/64145.
  • Haroun, L.; Saibi, S.; Cabana, H.; Bellenger, J. P. Intracellular Enzymes Contribution to the Biocatalytic Removal of Pharmaceuticals by Trametes Hirsuta. Environ. Sci. Technol. 2017, 51, 897–904. DOI: 10.1021/acs.est.6b04409.
  • Alkronz, E. S.; Moghayer, K. A.; Meimeh, M.; Gazzaz, M.; Abu-Nasser, B. S.; Abu-Naser, S. S. Prediction of Whether a Mushroom is Edible or Poisonous Using Back-Propagation Neural Network. Int. J. Acad. Appl. 2019, 3, 1–8.
  • Chuppa-Tostain, G.; Hoarau, J.; Watson, M.; Adelard, L.; Shum Cheong Sing, A.; Caro, Y.; Grondin, I.; Bourven, I.; Francois, J. M.; Girbal-Neuhauser, E.; Petit, T. Production of Aspergillus Niger Biomass on Sugarcane Distillery Wastewater: Physiological Aspects and Potential for Biodiesel Production. Fungal Biol. Biotechnol. 2018, 16, 1–12. DOI: 10.1186/s40694-018-0045-6.
  • Hata, T.; Kawai, S.; Okamura, H.; Nishida, T. Removal of Diclofenac and Mefenamic Acid by the White Rot Fungus Phanerochaete Sordida YK-624 and Identification of Their Metabolites after Fungal Transformation. Biodeg 2010, 21, 681–689. DOI: 10.1007/s10532-010-9334-3.
  • Aracagök, Y.; Goker, H.; Cihangir, N. Biodegradation of Diclofenac with Fungal Strains. Arch. Environ. Prot. 2018, 44, 55–62. DOI: 10.24425/118181.
  • Deshmukh, R.; Khardenavis, A. A.; Purohit, H. J. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J. Microbiol. 2016, 56, 247–264. DOI: 10.1007/s12088-016-0584-6.
  • Awasthi, A. K.; Pandey, A. K.; Khan, J. A Preliminary Report of Indigenous Fungal Isolates from Contaminated Municipal Solid Waste Site in India. Environ. Sci. Pollut. Res. Int. 2017, 24, 8880–8888. DOI: 10.1007/s11356-017-8472-0.
  • Mahmoud, S. M.; Mostafa, M. K.; Mohamed, S. A.; Sobhy, N. A.; Nasr, M. Bioremediation of Red Azo Dye from Aqueous Solutions by Aspergillus Niger Strain Isolated from Textile Wastewater. J. Environ. Chem. Eng. 2017, 5, 547–554. DOI: 10.1016/j.jece.2016.12.030.
  • Salgado, J. M.; Abrunhosa, L.; Venâncio, A.; Domínguez, J. M.; Belo, I. Combined Bioremediation and Enzyme Production by Aspergillus sp. in Olive Mill and Winery Wastewaters. Int. Biodeterior. Biodegrad. 2016, 110, 16–23. DOI: 10.1016/j.ibiod.2015.12.011.
  • Leitão, A. L. Potential of Penicillium Species in the Bioremediation Field. Int. J. Environ. Res. Public Health 2009, 6, 1393–1417. DOI: 10.3390/ijerph6041393.
  • Almeida, E. J. R.; Corso, C. R. Decolorization and Removal of Toxicity of Textile Azo Dyes Using Fungal Biomass Pelletized. Int. J. Environ. Sci. Technol. 2019, 16, 1319–1328. DOI: 10.1007/s13762-018-1728-5.
  • Munck, C.; Thierry, E.; Gräßle, S.; Chen, S. H.; Ting, A. S. Y. Biofilm Formation of Filamentous Fungi Coriolopsis sp. on Simple Muslin Cloth to Enhance Removal of Triphenylmethane Dyes. J. Environ. Manage 2018, 214, 261–266. DOI: 10.1016/j.jenvman.2018.03.025.
  • Choma, A.; Nowak, K.; Komaniecka, I.; Waśko, A.; Pleszczyńska, M.; Siwulski, M.; Wiater, A. Chemical Characterization of Alkali-Soluble Polysaccharides Isolated from a Boletus Edulis (Bull.) Fruiting Body and Their Potential for Heavy Metal Biosorption. Food Chem. 2018, 266, 329–334. DOI: 10.1016/j.foodchem.2018.06.023.
  • Wang, J. Y.; Cui, C. W. Characterization of the Biosorption Properties of Dormant Spores of Aspergillus Niger: A Potential Breakthrough Agent for Removing Cu2+ from Contaminated Water. RSC Adv. 2017, 7, 14069–14077. DOI: 10.1039/C6RA28694A.
  • Ding, D. X.; Xin, X.; Li, L.; Hu, Y. N.; Li, Y. G.; Wang, D. Y.; Fu, K. P. Removal and Recovery of U (VI) from Low Concentration Radioactive Wastewater by Ethylenediamine-Modified Biomass of Aspergillus Niger. Water Air Soil Pollut. 2014, 225, 2206. DOI: 10.1007/s11270-014-2206-4.
  • Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473-474, 619–641. DOI: 10.1016/j.scitotenv.2013.12.065.
  • Quinteros, D. A.; Allemandi, D. A.; Manzo, R. H. Equilibrium, and Release Properties of Aqueous Dispersion of Non-Steroidal anti-Inflammatory Drugs Complexed with Polyelectrolyte Eudragit E 100. Sci. Pharm. 2012, 80, 487–496. DOI: 10.3797/scipharm.1107-17.
  • Tian, H.; Ma, Y. J.; Li, W. Y.; Wang, J. W. Efficient Degradation of Triclosan by an Endophytic Fungus Penicillium Oxalicum B4. Environ. Sci. Pollut. Res. Int. 2018, 25, 8963–8975. DOI: 10.1007/s11356-017-1186-5.
  • Wu, J.; Yu, H. Q. Biosorption of Phenol and Chlorophenols from Aqueous Solutions by Fungal Mycelia. Process. Biochem. 2006, 41, 44–49. DOI: 10.1016/j.procbio.2005.03.065.
  • Omar, S. Decolorization of Different Textile Dyes by Isolated Aspergillus Niger. J. of Environ. Sci. Technol. 2015, 9, 149–156. DOI: 10.3923/jest.2016.149.156.
  • Liu, Y.; Chang, H.; Li, Z.; Zhang, C.; Feng, Y.; Cheng, D. Gentamicin Removal in Submerged Fermentation Using the Novel Fungal Strain Aspergillus Terrus FZC3. Sci. Rep. 2016, 6, 35856. DOI: 10.1038/srep35856.
  • Noman, E. A.; Al-Gheethi, A. A. S.; Talip, B. A.; Mohamed, R. M. S. R.; Nagao, H.; Kassim, A. H. B. M.; Rahman, J. A. Bioremediation of Xenobiotic Organic Compounds in Greywater by Fungi Isolated from Peatland, a Future Direction. In Management of Greywater in Developing Countries. Water Science and Technology Library. Radin Mohamed, R., Al-Gheethi, A., Mohd Kassim, A. Eds., Springer, Cham. Switzerland AG., 2019; pp 163–183 DOI: 10.1007/978-3-319-90269-2_9.
  • Grandes-Blanco, A. I.; Díaz-Godínez, G.; Téllez-Téllez, M.; Delgado-Macuil, R. J.; Rojas-López, M.; Bibbins-Martínez, M. D. Ligninolytic Activity Patterns of Pleurotus ostreatus Obtained by Submerged Fermentation in Presence of 2,6-Dimethoxyphenol and Remazol Brilliant Blue R Dye. Prep. Biochem. Biotechnol. 2013, 43, 468–480. DOI: 10.1080/10826068.2012.746233.
  • Palli, L.; Castellet-Rovira, F.; Perez-Trujillo, M.; Caniani, D.; Sarra-Adroguer, D.; Gori, R. Preliminary Evaluation of Pleurotus ostreatus for the Removal of Selected Pharmaceuticals from Hospital Wastewater. Biotechnol. Progress. 2017, 33, 1529–1537. DOI: 10.1002/btpr.2520.
  • Ergun, S. O.; Urek, R. O. Production of Ligninolytic Enzymes by Solid-State Fermentation Using Pleurotus ostreatus. Ann. Agrar. Sci. 2017, 15, 273–277. DOI: 10.1016/j.aasci.2017.04.003.
  • Singh, R.; Chauhan, M. Effective Management of gro-Industrial Residues as Composting in Mushroom Industry and Utilization of Spent Mushroom Substrate for Bioremediation. In Toxicity and Waste Management Using Bioremediation 1st ed.; Ashok K. Rathoure, Vinod K. Dhatwalia, Eds., IGI Global, Pennsylvania, USA, 2016; pp 158–177 DOI: 10.4018/978-1-4666-9734-8.ch008.
  • Cruz-Ornelas, R.; Sánchez-Vázquez, J. E.; Amaya-Delgado, L.; Guillén-Navarro, K.; Calixto-Romo, A. Biodegradation of NSAIDs and Their Effect on the Activity of Ligninolytic Enzymes from Pleurotus Djamor. Biotech 2019, 9, 373. DOI: 10.1007/s13205-019-1904-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.