Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 59, 2024 - Issue 3
63
Views
0
CrossRef citations to date
0
Altmetric
Articles

A novel and efficient voltammetric sensor for the simultaneous determination of alizarin red S and tartrazine by using poly(leucine) functionalized carbon paste electrode

, ORCID Icon, &
Pages 103-112 | Received 14 Feb 2024, Accepted 27 Mar 2024, Published online: 13 Apr 2024

References

  • Fouillaud, M.; Caro, Y.; Venkatachalam, M.; Grondin, I.; Dufossé, Anthraquinones. L.; Nollet, Leo M.L.; Gutiérrez-Uribe, J.A.; Eds.; Phenolic Compounds in Food Characterization and Analysis; Boca Raton; CRC Press, 2018, pp 130–170.
  • Puchtler, H.; Meloan, S. N.; Terry, M. S. On the History and Mechanism of Alizarin and Alizarin Red S Stains for Calcium. J. Histochem. Cytochem. 1968, 17, 110–124. DOI: 10.1177/17.2.110.
  • Sun, W.; Jiao, K. Linear Sweep Voltammetric Determination of Protein Based on Its Interaction with Alizarin Red S. Talanta. 2002, 56, 1073–1080. DOI: 10.1016/s0039-9140(01)00628-2.
  • Fischbach, J.; Loh, Q.; Bier, F. F.; Lim, T. S.; Frohme, M.; Glökler, J. Alizarin Red S for Online Pyrophosphate Detection Identified by a Rapid Screening Method. Sci. Rep. 2017, 7, 45085. DOI: 10.1038/srep45085.
  • Kwok-Keung, S.; Oi-Yin, C. Electroanalysis of Copper Species at Polypyrrole-Modified Electrodes Bearing Alizarin Red S Ligands. J. Electroanal. Chem. 1995, 388, 45–51.
  • Singh, S.; Patidar, R.; Srivastava, V. C.; Shang-Lien, L.; Nidheesh, P. V. A Critical Review on the Degradation Mechanism of Textile Effluent during Electrocatalytic Oxidation: Removal Optimization and Degradation Pathways. J. Environ. Chem. Eng. 2023, 11, 111277. DOI: 10.1016/j.jece.2023.111277.
  • Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B: Environ. 2017, 202, 217–261. DOI: 10.1016/j.apcatb.2016.08.037.
  • Rehman, R.; Mahmud, T. Sorptive Elimination of Alizarin Red-S Dye from Water Using Citrullus Lanatus Peels in Environmentally Benign Way along with Equilibrium Data Modeling. Asian J. Chem. 2013, 25, 5351–5356. DOI: 10.14233/ajchem.2013.14179.
  • Venkatesh, S.; Arutchelvan, V. Biosorption of Alizarin Red Dye onto Immobilized Biomass of Canna Indica: Isotherm, Kinetics, and Thermodynamic Studies. DWT. 2020, 196, 409–421. DOI: 10.5004/dwt.2020.25798.
  • Adnan, L. A.; Sathishkumar, P.; Yusoff, A. R. M.; Hadibarata, T.; Ameen, F. Rapid Bioremediation of Alizarin Red S and Quinizarine Green SS Dyes Using Trichoderma Lixii F21 Mediated by Biosorption and Enzymatic Processes. Bioprocess Biosyst. Eng. 2017, 40, 85–97. DOI: 10.1007/s00449-016-1677-7.
  • Basavaiah, K.; Swamy, J. M.; SriLatha. Determination of Alizarin Red S by Ionic Liquid-Based Extraction and High-Performance Liquid Chromatography. Talanta. 1999, 50 (4), 887–892. DOI: 10.1016/s0039-9140(99)00179-4.
  • Pan, F.; Zhang, Y.; Yuan, Z.; Lu, C. Determination of Alizarin Red S Based on Layered Double Hydroxides Improved Chemiluminescence from Hydrogen Peroxide and Luminol. Anal. Methods. 2017, 9, 6468–6473. DOI: 10.1039/C7AY02405C.
  • dos Santos, T. C. R.; Aucelio, R. Q.; Campos, R. C. Spectrofluorimetric Method for the Determination of Aluminum with Alizarin Red PS. Microchim. Acta. 2003, 142, 63–66. DOI: 10.1007/s00604-003-0954-8.
  • Gao, J.; Yu, J.; Lu, Q.; He, X.; Yang, W.; Li, Y.; Pu, L.; Yang, Z. Decoloration of Alizarin Red S in Aqueous Solution by Glow Discharge Electrolysis. Dyes Pigm. 2008, 76, 47–52. DOI: 10.1016/j.dyepig.2006.08.033.
  • Hu, G.; Chen, L.; Zhang, J.; Chen, P.; Wang, W.; Song, J.; Qiu, L.; Song, J.; Hu, L. Determination of Alizarin Red S Using a Novel B-Z Oscillation System Catalyzed by a Tetra Azamacrocyclic Complex. Cent. Eur. J. Chem 2009, 7, 291–297. DOI: 10.2478/s11532-009-0042-y.
  • Karimi-Maleh, H.; Beitollahi, H.; Kumar, P. S.; Tajik, S.; Jahani, P. M.; Karimi, F.; Karaman, C.; Vasseghian, Y.; Baghayeri, M.; Rouhi, J.; et al. Recent Advances in Carbon Nanomaterials-Based Electrochemical Sensors for Food Azo Dyes Detection. Food Chem. Toxicol. 2022, 164, 112961. DOI: 10.1016/j.fct.2022.112961.
  • Manjunatha, J. G. G. A Novel Poly (Glycine) Biosensor towards the Detection of Indigo Carmine: A Voltammetric Study. J. Food Drug Anal. 2018, 26, 292–299. DOI: 10.1016/j.jfda.2017.05.002.
  • dos Santos, M. C.; Maynart, M. C.; Aveiro, L. R.; da Paz, E. C.; Pinheiro, D. S. Carbon-Based Materials: Recent Advances, Challenges, and Perspectives. Ref. Module Mater. Sci. Mater. Eng. 2017.
  • Nguyen, T. D.; Nguyen, M. T.; Lee, J. S. Carbon-Based Materials and Their Applications in Sensing by Electrochemical Voltammetry. Inorg. 2023, 11, 81. DOI: 10.3390/inorganics11020081.
  • Beitollahi, H.; Movahedifar, F.; Tajik, S.; Jahani, S. A Review on the Effects of Introducing CNTs in the Modification Process of Electrochemical Sensors. Electroanalysis. 2019, 31, 1195–1203. DOI: 10.1002/elan.201800370.
  • Rajendrachari, S.; Arslanoglu, H.; Yaras, A.; Golabhanvi, S. M. Electrochemical Detection of Uric Acid Based on a Carbon Paste Electrode Modified with Ta2O5 Recovered from Ore by a Novel Method. ACS Omega. 2023, 8, 46946–46954. DOI: 10.1021/acsomega.3c06749.
  • Compton, O. C.; Nguyen, S. T. Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 2010, 6, 711–723. DOI: 10.1002/smll.200901934.
  • Mohammadnavaz, A.; Beitollahi, H.; Modiri, S. Electro-Catalytic Determination of l-Cysteine Using Multi Walled Carbon Nanotubes-Co3O4 Nanocomposite/Benzoylferrocene/Ionic Liquid Modified Carbon Paste Electrode. Inorganica Chim. Acta 2023, 548, 121340. DOI: 10.1016/j.ica.2022.121340.
  • George, J. M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Mikrochim. Acta. 2018, 185, 358. DOI: 10.1007/s00604-018-2894-3.
  • Halfadji, A.; Naous, M.; Rajendrachari, S.; Ceylan, Y.; Ceylan, K. B.; Raja Shekar, P. V. Effective Investigation of Electro-Catalytic, Photocatalytic, and Antimicrobial Properties of Porous CuO Nanoparticles Green Synthesized Using Leaves of Cupressocyparis Leylandii. J. Mol. Struct. 2024, 1301, 137318. DOI: 10.1016/j.molstruc.2023.137318.
  • Tajik, S.; Beitollah, H.; Nejad, F. G.; Safaei, M.; Zhang, K.; Van Le, Q.; Varma, R. S.; Jang, H. W.; Shokouhimehr, M. Developments and Applications of Nanomaterial-Based Carbon Paste Electrodes. RSC Adv. 2020, 10, 21561–21581. DOI: 10.1039/d0ra03672b.
  • Kuskur, C. M.; Kumara Swamy, B. E.; Jayadevappa, H. Poly (Naphthol Green B) Modified Carbon Paste Electrode for the Analysis of Paracetamol and Norepinephrine. Ionics. 2019, 25, 1845–1855. DOI: 10.1007/s11581-018-2606-3.
  • Mahale, R. S.; Rajashekar, V.; Vasanth, S.; Chikkegowda, S. P.; Rajendrachari, S.; Mahesh, V. Fabrication of Mechanically Alloyed Super Duplex Stainless Steel Powder-Modified Carbon Paste Electrode for the Determination of Methylene Blue by the Cyclic Voltammetry Technique. ACS Omega. 2024, 9, 10660–10670. DOI: 10.1021/acsomega.3c09163.
  • Rajendrachari, S.; Basavegowda, N.; Vinaykumar, R.; Narsimhachary, D.; Somu, P.; Lee, M. J. Electrocatalytic Determination of Methyl Orange Dye Using Mechanically Alloyed Novel Metallic Glass Modified Carbon Paste Electrode by Cyclic Voltammetry. Inorg. Chem. Commun. 2023, 155, 111010. DOI: 10.1016/j.inoche.2023.111010.
  • Rajendrachari, S.; Basavegowda, N.; Adimule, V. M.; Avar, B.; Somu, P.; Saravana Kumar, R. M.; Baek, K. H. Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques. Biosensors. (Basel). 2022, 12, 1173. DOI: 10.3390/bios12121173.
  • Rajendrachari, S.; Kumara Swamy, B. E. Simultaneous Electro-Generation and Electro-Deposition of Copper Oxide Nanoparticles on Glassy Carbon Electrode and Its Sensor Application. SN Appl. Sci. 2020, 2, 956.
  • Gupta, S. S.; Mishra, V.; Mukherjee, M. D.; Saini, P.; Ranjan, K. R. Amino Acid Derived Biopolymers: Recent Advances and Biomedical Applications. Int. J. Biol. Macromol. 2021, 188, 542–567. DOI: 10.1016/j.ijbiomac.2021.08.036.
  • Kokab, T.; Shah, A.; Iftikhar, F. J.; Nisar, J.; Akhter, M. S.; Khan, S. B. Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc (II), Cadmium (II), Copper (II), and Mercury (II) Ions. ACS Omega. 2019, 4, 22057–22068. DOI: 10.1021/acsomega.9b03189.
  • Pushpanjali, P. A.; Manjunatha, J. G.; Hareesha, N.; D' Souza, E. S.; Charithra, M. M.; Prinith, N. S. Voltammetric Analysis of Antihistamine Drug Cetirizine and Paracetamol at Poly(L-Leucine) Layered Carbon Nanotube Paste Electrode. Surf. Interf. 2021, 24, 101154. DOI: 10.1016/j.surfin.2021.101154.
  • Manjunatha, J. G.; Kanthappa, B.; Hareesha, N.; Raril, C.; Tighezza, A. M.; Albaqami, M. D. Enhanced Electrochemical Detection of Rutin Using Poly (Methyl Orange) Modified Carbon Paste Electrode as a Responsive Electrochemical Sensor. Chem. Afr. 2023, 7.
  • Pushpanjali, P. A.; Manjunatha, J. G.; Tigari, G.; Fattepur, S. Poly (Niacin) Based Carbon Nanotube Sensor for the Sensitive and Selective Voltammetric Detection of Vanillin with Caffeine. Anal. Bioanal. Electrochem. 2020, 12, 553–568.
  • Hareesha, N.; Manjunatha, J. G. A Simple and Low-Cost Poly (DL-Phenylalanine) Modified Carbon Sensor for the Improved Electrochemical Analysis of Riboflavin. J. Sci. Adv. Mater. Dev. 2020, 5, 502–511. DOI: 10.1016/j.jsamd.2020.08.005.
  • Dadpou, B.; Nematollahi, D. Electrochemical Oxidation of Alizarin Red-S on Glassy Carbon Electrode: Mechanistic Study, Surface Adsorption and Preferential Surface Orientation. J. Electrochem. Soc. 2016, 163, H559–H565. DOI: 10.1149/2.0781607jes.
  • Manjunatha, J. G.; Subbaiah, N. P.; Hareesha, N.; Raril, C.; Tighezza, A. M.; Albaqam, M. D. Fabrication of Polymer-Modifed Carbon Sensor and Its Application in the Electrochemical Determination of Indigo Carmine. Monatsh. Chem. 2023, 154, 1235–1242. DOI: 10.1007/s00706-023-03129-5.
  • Pushpanjali, P. A.; Manjunatha, J. G. Development of Polymer Modified Electrochemical Sensor for the Determination of Alizarin Carmine in the Presence of Tartrazine. Electroanalysis. 2020, 32, 2474–2480. DOI: 10.1002/elan.202060181.
  • Pushpanjali, P. A.; Manjunatha, J. G. Electroanalysis of Sodium Alizarin Sulfonate at Surfactant Modified Carbon Nanotube Paste Electrode: A Cyclic Voltammetric Study. J. Mater. Environ. Sci. 2019, 10, 939–947.
  • Amrutha, B. M.; Manjunata, J. G.; Bhatt, A. S.; Raril, C.; Pushpanjali, P. A. Electrochemical Sensor for the Determination of Alizarin Red-S at Non-Ionic Surfactant Modified Carbon Nanotube Paste Electrode. Phys. Chem. Res. 2019, 7, 523–533.
  • Flieger, J.; Michalewska, M. T.; Groszek, A.; Blicharska, E. Determination of Alizarin Red S by Ionic Liquid-Based Extraction and High-Performance Liquid Chromatography. Anal. Lett. 2016, 49, 1997–2005. DOI: 10.1080/00032719.2016.1138119.
  • Liu, F.; Kan, X. Dual-Analyte Electrochemical Sensor for Fructose and Alizarin Red Specifically Sensitive Detection Based on Indicator Displacement Assay. Electrochim. Acta. 2019, 319, 286–292. DOI: 10.1016/j.electacta.2019.07.001.
  • Deffo, G.; Temgoua, R. C. T.; Mbokou, S. F.; Njanja, E.; Tonlé, I. K.; Ngamen, E. A Sensitive Voltammetric Analysis and Detection of Alizarin Red S onto a Glassy Carbon Electrode Modified by an Organosmectite. Sens. Int. 2021, 2, 100126. DOI: 10.1016/j.sintl.2021.100126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.