Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 59, 2024 - Issue 3
31
Views
0
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic degradation process of antibiotic sulfamethoxazole by ZnO in aquatic systems: a dynamic kinetic model based on contributions of OH radical, oxygenated radical intermediates and dissolved oxygen

, & ORCID Icon
Pages 113-124 | Received 17 Oct 2023, Accepted 27 Mar 2024, Published online: 15 Apr 2024

References

  • de Ilurdoz, M. S.; Sadhwani, J. J.; Reboso, J. V. Antibiotic Removal Processes from Water & Wastewater for the Protection of the Aquatic Environment – A Review. J. Water Proc. Eng. 2022, 45, 102474. DOI: 10.1016/j.jwpe.2021.102474.
  • Chen, Y.; Yang, J.; Zeng, L.; Zhu, M. Recent Progress on the Removal of Antibiotic Pollutants Using Photocatalytic Oxidation Process. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1401–1448. DOI: 10.1080/10643389.2020.1859289.
  • Calvete, M. J. F.; Piccirillo, G.; Vinagreiro, C. S.; Pereira, M. M. Hybrid Materials for Heterogeneous Photocatalytic Degradation of Antibiotics. Coord. Chem. Rev. 2019, 395, 63–85. DOI: 10.1016/j.ccr.2019.05.004.
  • Tufail, A.; Price, W. E.; Mohseni, M.; Pramanik, B. K.; Hai, F. I. A Critical Review of Advanced Oxidation Processes for Emerging Trace Organic Contaminant Degradation: Mechanisms, Factors, Degradation Products, and Effluent Toxicity. J. Water Proc. Eng. 2021, 40, 101778. DOI: 10.1016/j.jwpe.2020.101778.
  • Ikram, M.; Rashid, M.; Haider, A.; Naz, S.; Haider, J.; Raza, A.; Ansar, M. T.; Uddin, M. K.; Ali, N. M.; Ahmed, S. S.; et al. A Review of Photocatalytic Characterization, and Environmental Cleaning, of Metal Oxide Nanostructured Materials. Sustain. Mater. Technol. 2021, 30, e00343. DOI: 10.1016/j.susmat.2021.e00343.
  • Balu, S.; Chuaicham, C.; Balakumar, V.; Rajendran, S.; Sasaki, K.; Sekar, K.; Maruthapillai, A. Recent Development on Core-Shell Photo(Electro)Catalysts for Elimination of Organic Compounds from Pharmaceutical Wastewater. Chemosphere. 2022, 298, 134311. DOI: 10.1016/j.chemosphere.2022.134311.
  • Majumder, S.; Chatterjee, S.; Basne, P.; Mukherjee, J. ZnO Based Nanomaterials for Photocatalytic Degradation of Aqueous Pharmaceutical Waste Solutions – A Contemporary Review. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100386. DOI: 10.1016/j.enmm.2020.100386.
  • Ani, I. J.; Akpan, U. G.; Olutoye, M. A.; Hameed, B. H. Photocatalytic Degradation of Pollutants in Petroleum Refinery Wastewater by TiO2- and ZnO-Based Photocatalysts: Recent Development. J. Clean. Prod. 2018, 205, 930–954. DOI: 10.1016/j.jclepro.2018.08.189.
  • Paul, D. R.; Gautam, S.; Panchal, P.; Nehra, S. P.; Choudhary, P.; Sharma, A. ZnO-Modified g‑C3N4: A Potential Photocatalyst for Environmental Application. ACS Omega. 2020, 5, 3828–3838. DOI: 10.1021/acsomega.9b02688.
  • Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F.; Guo, J. Enhanced Photocatalytic Degradation of Sulfamethoxazole by Zinc Oxide Photocatalyst in the Presence of Fluoride Ions: Optimization of Parameters and Toxicological Evaluation. Water Res. 2018, 132, 241–251. DOI: 10.1016/j.watres.2018.01.016.
  • Makropoulou, T.; Kortidis, I.; Davididou, K.; Motaung, D. E.; Chatzisymeon, E. Photocatalytic Facile ZnO Nanostructures for the Elimination of the Antibiotic Sulfamethoxazole in Water. J. Water Proc. Eng. 2020, 36, 101299. DOI: 10.1016/j.jwpe.2020.101299.
  • Wang, A.; Ni, J.; Wang, W.; Wang, X.; Liu, D.; Zhu, Q. MOF-Derived N-Doped ZnO Carbon Skeleton@Hierarchical Bi2MoO6 S-Scheme Heterojunction for Photodegradation of SMX: Mechanism, Pathways and DFT Calculation. J. Hazard. Mater. 2022, 426, 128106. DOI: 10.1016/j.jhazmat.2021.128106.
  • Jang, S. B.; Yoon, S. Y.; Wong, K. T.; Choong, C. E.; Yoon, Y.; Choi, E. H.; Jang, M. Enhanced In-Situ Oxygen Evolution and Hydrogen Peroxide Production by a Floatable ZnO-Incorporated Polyurethane Photocatalyst for Sulfamethoxazole Degradation. Chem. Eng. J. 2023, 467, 143470. DOI: 10.1016/j.cej.2023.143470.
  • Chakrabarti, S.; Chaudhuri, B.; Bhattacharjee, S.; Das, P.; Dutta, B. K. Degradation Mechanism and Kinetic Model for Photocatalytic Oxidation of PVC–ZnO Composite Film in Presence of a Sensitizing Dye and UV Radiation. J. Hazard. Mater. 2008, 154, 230–236. DOI: 10.1016/j.jhazmat.2007.10.015.
  • Amani-Ghadim, A. R.; Dorraji, M. S. S. Modeling of Photocatalytic Process on Synthesized ZnO Nanoparticles: Kinetic Model Development and Artificial Neural Networks. Appl. Catal. B: Environ. 2015, 163, 539–546. DOI: 10.1016/j.apcatb.2014.08.020.
  • Fathinia, M.; Khataee, A.; Aber, S.; Naseri, A. Development of Kinetic Models for Photocatalytic Ozonation of Phenazopyridine on TiO2 Nanoparticles Thin Film in a Mixed Semi-Batch Photoreactor. Appl. Catal. B: Environ. 2016, 184, 270–284. DOI: 10.1016/j.apcatb.2015.11.033.
  • Majumder, A.; Gupta, A. K. Kinetic Modeling of the Photocatalytic Degradation of 17-β Estradiol Using Polythiophene Modified Al-Doped ZnO: Influence of Operating Parameters, Interfering Ions, and Estimation of the Degradation Pathways. J. Environ. Chem. Eng. 2021, 9, 106496. DOI: 10.1016/j.jece.2021.106496.
  • Katare, A. K.; Tabassum, A.; Sharma, A. K.; Sharma, S. Treatment of Pharmaceutical Wastewater through Activated Sludge Process—A Critical Review. Environ. Monit. Assess. 2023, 195, 1466. DOI: 10.1007/s10661-023-11967-3.
  • Shih, T.-T.; Hsu, I.-H.; Wu, J.-F.; Lin, C.-H.; Sun, Y.-C. Development of Chip-Based Photocatalyst-Assisted Reduction Device to Couple High Performance Liquid Chromatography and Inductively Coupled Plasma-Mass Spectrometry for Determination of Inorganic Selenium Species. J. Chromatogr. A. 2013, 1304, 101–108. DOI: 10.1016/j.chroma.2013.06.067.
  • Cai, Q.; Hu, J. Decomposition of Sulfamethoxazole and Trimethoprim by Continuous UVA/LED/TiO2 Photocatalysis: Decomposition Pathways, Residual Antibacterial Activity and Toxicity. J. Hazard. Mater. 2017, 323, 527–536. DOI: 10.1016/j.jhazmat.2016.06.006.
  • Ao, X.; Li, Z.; Zhang, H. A Comprehensive Insight into a Rapid Degradation of Sulfamethoxazole by Peroxymonosulfate Enhanced UV-a LED/g-C3N4 Photocatalysis. J. Clean. Prod 2022, 356, 131822. DOI: 10.1016/j.jclepro.2022.131822.
  • Yang, L.-Y.; Dong, S.-Y.; Sun, J.-H.; Feng, J.-L.; Wu, Q.-H.; Sun, S.-P. Microwave-Assisted Preparation, Characterization and Photocatalytic Properties of a Dumbbell-Shaped ZnO Photocatalyst. J. Hazard. Mater. 2010, 179, 438–443. DOI: 10.1016/j.jhazmat.2010.03.023.
  • Vaiano, V.; Iervolino, G.; Rizzo, I. Cu-Doped ZnO as Efficient Photocatalyst for the Oxidation of Arsenite to Arsenate under Visible Light. Appl. Catl. B: Environ: B. 2018, 238, 471–479. DOI: 10.1016/j.apcatb.2018.07.026.
  • Patil, A. B.; Patil, K. R.; Pardeshi, S. K. Enhancement of Oxygen Vacancies and Solar Photocatalytic Activity of Zinc Oxide by Incorporation of Nonmetal. J. Solid State Chem. 2011, 184, 3273–3279. DOI: 10.1016/j.jssc.2011.10.016.
  • Anju, S. G.; Yesodharan, S.; Yesodharan, E. P. Zinc Oxide Mediated Sonophotocatalytic Degradation of Phenol in Water. Chem. Eng. J. 2012, 189–190, 84–93. DOI: 10.1016/j.cej.2012.02.032.
  • Karimi Estahbanati, M. R.; Feilizadeh, M.; Babin, A.; Mei, B.; Mul, G.; Iliuta, M. C. Selective Photocatalytic Oxidation of Cyclohexanol to Cyclohexanone: A Spectroscopic and Kinetic Study. Chem. Eng. J. 2020, 382, 122732. DOI: 10.1016/j.cej.2019.122732.
  • Yuan, R.; Zhu, Y.; Zhou, B.; Hu, J. Photocatalytic Oxidation of Sulfamethoxazole in the Presence of TiO2: Effect of Matrix in Aqueous Solution on Decomposition Mechanisms. Chem. Eng. J. 2019, 359, 1527–1536. DOI: 10.1016/j.cej.2018.11.019.
  • Meshram, S.; Limaye, R.; Ghodke, S.; Nigam, S.; Sonawane, S.; Chikate, R. Continuous Flow Photocatalytic Reactor Using ZnO–Bentonite Nanocomposite for Degradation of Phenol. Chem. Eng. J. 2011, 172, 1008–1015. DOI: 10.1016/j.cej.2011.07.015.
  • Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. DOI: 10.1016/j.watres.2015.04.038.
  • Szczepanik, B. Photocatalytic Degradation of Organic Contaminants over Clay-TiO2 Nanocomposites: A Review. Appl. Clay Sci. 2017, 141, 227–239. DOI: 10.1016/j.clay.2017.02.029.
  • Hirakawa, T.; Daimon, T.; Kitazawa, M.; Ohguri, N.; Koga, C.; Negishi, N.; Matsuzawa, S.; Nosaka, Y. An Approach to Estimating Photocatalytic Activity of TiO2 Suspension by Monitoring Dissolved Oxygen and Superoxide Ion on Decomposing Organic Compounds. J. Photochem. Photobiol. A: Chem. 2007, 190, 58–68. DOI: 10.1016/j.jphotochem.2007.03.012.
  • Zhu, H. Y.; Xiao, L.; Jiang, R.; Zeng, G. M.; Liu, L. Efficient Decolorization of Azo Dye Solution by Visible Light-Induced Photocatalytic Process Using SnO2/ZnO Heterojunction Immobilized in Chitosan Matrix. Chem. Eng. J. 2011, 172, 746–753. DOI: 10.1016/j.cej.2011.06.053.
  • Muñoz-Batista, M. J.; Ballari, M. M.; Kubacka, A.; Alfano, O. M.; Fernández-García, M. Braiding Kinetics and Spectroscopy in Photo-Catalysis: The Spectro-Kinetic Approach. Chem. Soc. Rev. 2019, 48, 637–682. DOI: 10.1039/c8cs00108a.
  • Mills, A.; Lee, S. K. Semiconductor Photocatalysis. In Advanced Oxidation Processes for Water and Wastewater Treatment, Parsons S., Ed.; IWA Publishing: London, UK, 2004; pp. 137–166. DOI: 10.2166/9781780403076.
  • Satori, H.; Kawase, Y. Decolorization of Dark Brown Colored Coffee Effluent Using Zinc Oxide Particles: The Role of Dissolved Oxygen in Degradation of Colored Compounds. J. Environ. Manage. 2014, 139, 172–179. DOI: 10.1016/j.jenvman.2014.02.032.
  • Harada, T.; Yatagai, T.; Kawase, Y. Hydroxyl Radical Generation Linked with Iron Dissolution and Dissolved Oxygen Consumption in Zero-Valent Iron Wastewater Treatment Process. Chem. Eng. J. 2016, 303, 611–620. DOI: 10.1016/j.cej.2016.06.047.
  • Leandri, V.; Gardner, J. M.; Jonsson, M. Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. J. Phys. Chem. C. 2019, 123, 6667–6674. DOI: 10.1021/acs.jpcc.9b00337.
  • Parrino, F.; Livraghi, S.; Giamello, E.; Ceccato, R.; Palmisano, L. Role of Hydroxyl, Superoxide, and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO2 Suspensions. ACS Catal. 2020, 10, 7922–7931. DOI: 10.1021/acscatal.0c02010.
  • Modtoufi, N.; Constantinides, A. Applied Numerical Methods for Chemical Engineers. Elsevier: London, UK, 2023; pp. 248–256

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.