Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 59, 2024 - Issue 4
79
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of temperature on the dissolution of the lead (II) carbonate hydrocerussite for varying pH and dissolved inorganic carbon conditions

&
Pages 155-171 | Received 29 Sep 2023, Accepted 02 Apr 2024, Published online: 24 Apr 2024

References

  • U.S. EPA. Integrated Science Assessment for Lead (Second External Review Draft). U.S. EPA; Washington, DC, EPA/600/R-10/075B, 2012.
  • Sandvig, A.; Kwan, P.; Kirmeyer, G.; Maynard, B.; Mast, D.; Trussell, R. R.; Trussell, S.; Cantor, A.; Prescott, A. Contribution of Service Line and Plumbing Fixtures to Lead and Copper Rule Compliance Issues. AWWA Research Foundation; Denver CO, 2008.
  • Tam, Y.; Elefsiniotis, P. Corrosion Control in Water Supply Systems: Effect of pH, Alkalinity, and Orthophosphate on Lead and Copper Leaching from Brass Plumbing. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2009, 44, 1251–1260. DOI: 10.1080/10934520903140009.
  • Kim, E. J.; Herrera, J. E.; Huggins, D.; Braam, J.; Koshowski, S. Effect of pH on the Concentrations of Lead and Trace Contaminants in Drinking Water: A Combined Batch, Pipe Loop and Sentinel Home Study. Water Res. 2011, 45, 2763–2774. DOI: 10.1016/j.watres.2011.02.023.
  • Schock, M. R. Response of Lead Solubility to Dissolved Carbonate in Drinking Water. J. Am. Water Works Asses. 1980, 72, 695–704. DOI: 10.1002/j.1551-8833.1980.tb04616.x.
  • Marani, D.; Macchi, G.; Pagano, M. Lead Precipitation in the Presence of Sulphate and Carbonate: Testing of Thermodynamic Predictions. Water Res. 1995, 29, 1085–1092. DOI: 10.1016/0043-1354(94)00232-V.
  • Edwards, M.; Dudi, A. Role of Chlorine and Chloramine in Corrosion of Lead-Bearing Plumbing Materials. J. Am. Water Works Asses. 2004, 96, 69–81. DOI: 10.1002/j.1551-8833.2004.tb10724.x.
  • Vasquez, F. A. The Effect of Free Chlorine and Chloramines on Lead Release in a Distribution System., M.Sc. Thesis, University of Central Florida Orlando, Florida, 2005.
  • Lin, Y.-P.; Valentine, R. L. Release of Pb (II) from Monochloramine-Mediated Reduction of Lead Oxide (PbO2). Environ. Sci. Technol. 2008, 42, 9137–9143. DOI: 10.1021/es801037n.
  • Gouider, M.; Bouzid, J.; Sayadi, S.; Montiel, A. Impact of Orthophosphate Addition on Biofilm Development in Drinking Water Distribution Systems. J. Hazard. Mater. 2009, 167, 1198–1202. DOI: 10.1016/j.jhazmat.2009.01.128.
  • Ng, D.; Strathmann, T. J.; Lin, Y.-P. Role of Orthophosphate as a Corrosion Inhibitor in Chloraminated Solutions Containing Tetravalent Lead Corrosion Product PbO2. Environ. Sci. Technol. 2012, 46, 11062–11069. DOI: 10.1021/es302220t.
  • Zhou, E.; Payne, S. J. O.; Hofmann, R.; Andrews, R. C. Factors Affecting Lead Release in Sodium Silicate-Treated Partial Lead Service Line Replacements. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 922–930. DOI: 10.1080/10934529.2015.1030283.
  • Schock, M. R.; Lytle, D. A.; Sandvig, A. M.; Clement, J.; Harmon, S. M. Replacing Polyphosphate with Silicate to Solve Lead, Copper, and Source Water Iron Problems. J. Am. Water Works Asses. 2005, 97, 84–93. DOI: 10.1002/j.1551-8833.2005.tb07521.x.
  • Edwards, M.; McNeill, L. S. Effect of Phosphate Inhibitors on Lead Release from Pipes. J. Am. Water Works Asses. 2002, 94, 79–90. DOI: 10.1002/j.1551-8833.2002.tb09383.x.
  • U.S. EPA. Optimal Corrosion Control Treatment Evaluation Technical Recommendations for Primacy Agencies and Public Water Systems. Office of Ground Water and Drinking Water: 2016; p 140.
  • Peng, C.-Y.; Ferguson, J. F.; Korshin, G. V. Effects of Chloride, Sulfate and Natural Organic Matter (NOM) on the Accumulation and Release of Trace-Level Inorganic Contaminants from Corroding Iron. Water Res. 2013, 47, 5257–5269. DOI: 10.1016/j.watres.2020.116037.
  • Trueman, B. F.; Bleasdale-Pollowy, A.; Locsin, J. A.; Bennett, J. L.; Krkošek, W. H.; Gagnon, G. A. Seasonal Lead Release into Drinking Water and the Effect of Aluminum. ACS ES. T Water. 2022, 2, 710–720. DOI: 10.1021/acsestwater.1c00320.
  • Kim, E. J.; Herrera, J. E. Characteristics of Lead Corrosion Scales Formed during Drinking Water Distribution and Their Potential Influence on the Release of Lead and Other Contaminants. Environ. Sci. Technol. 2010, 44, 6054–6061. DOI: 10.1021/es101328u.
  • Wasserstrom, L. W.; Miller, S. A.; Triantafyllidou, S.; Desantis, M. K.; Schock, M. R. Scale Formation under Blended Phosphate Treatment for a Utility with Lead Pipes. J. Am. Water Works Assoc. 2017, 109, E464–E478. DOI: 10.5942/jawwa.2017.109.0121.
  • Wang, Y.; Xie, Y.; Giammar, D. E. Lead (IV) Oxide Formation and Stability in Drinking Water Distribution Systems. Water Research Foundation; Denver, CO, 2012.
  • Wang, Y.; Jing, H.; Mehta, V.; Welter, G. J.; Giammar, D. E. Impact of Galvanic Corrosion on Lead Release from Aged Lead Service Lines. Water Res. 2012, 46, 5049–5060. DOI: 10.1016/j.watres.2012.06.046.
  • Tully, J.; DeSantis, M. K.; Schock, M. R. Water Quality-Pipe Deposit Relationships in Midwestern Lead Pipes. J. Am. Water Works Asses. 2019, 1, 1–18, DOI: 10.1002/aws2.1127.
  • Taylor, P.; Lopata, V. J. Stability and Solubility Relationships between Some Solids in the System PbO-CO2-H2O. Can. J. Chem. 1984, 62, 395–402. DOI: 10.1139/v84-070.
  • Noel, J. D.; Wang, Y.; Giammar, D. E. Effect of Water Chemistry on the Dissolution Rate of the Lead Corrosion Product Hydrocerussite. Water Res. 2014, 54, 237–246. DOI: 10.1016/j.watres.2014.02.004.
  • Liu, H.; Korshin, G. V.; Ferguson, J. F. Investigation of the Kinetics and Mechanisms of the Oxidation of Cerussite and Hydrocerussite by Chlorine. Environ. Sci. Technol. 2008, 42, 3241–3247. DOI: 10.1021/es7024406.
  • Dodrill, D. M.; Edwards, M. A. Corrosion Control on the Basis of Utility Experience. J. Am. Water Works Asses. 1995, 87, 74–85. DOI: 10.1002/j.1551-8833.1995.tb06395.x.
  • Lee, R. G.; Becker, W. C.; Collins, D. W. Lead at the Tap: Sources and Control. J. Am. Water Works Asses. 1989, 81, 52–62. DOI: 10.1002/j.1551-8833.1989.tb03238.x.
  • Masters, S.; Welter, G. J.; Edwards, M. Seasonal Variations in Lead Release to Potable Water. Environ. Sci. Technol. 2016, 50, 5269–5277. DOI: 10.1021/acs.est.5b05060.
  • Karalekas, P. C.; Ryan, C. R.; Taylor, F. B. Control of Lead, Copper, and Iron Pipe Corrosion in Boston. J. Am. Water Works Asses. 1983, 75, 92–95. DOI: 10.1002/j.1551-8833.1983.tb05073.x.
  • Schock, M. R. Causes of Temporal Variability of Lead in Domestic Plumbing Systems. Environ. Monit. Assess. 1990, 15, 59–82. DOI: 10.1007/BF00454749.
  • Clement, M.; Seux, R.; Rabarot, S. A Practical Model for Estimating Total Lead Intake from Drinking Water. Water Res. 2000, 34, 1533–1542. DOI: 10.1016/S0043-1354(99)00277-8.
  • Docherty, B.; Kariuki, M. Creating an Effective Corrosion Control Program to Eliminate Lead in Drinking Water in Hamilton, Ontario. J. Am. Water Works Asses. 2019, 111, 28–38. DOI: 10.1002/awwa.1378.
  • Mohammadzadeh, M.; Basu, O. D.; Herrera, J. E. Impact of Water Chemistry on Lead Carbonate Dissolution in Drinking Water Distribution Systems. J. Wat. Res. Prot. 2015, 7, 389–397, DOI: 10.4236/jwarp.2015.75031.
  • Kushnir, C. S. E.; Robinson, C. E. Exploring Uncertainty in Thermodynamic Modeling of the Lead Carbonate Aqueous System. Wat. Qual. Res. 2021, 56, 194–204. DOI: 10.2166/wqrj.2021.017.
  • Lothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); 1999.
  • Yoder, C. H.; Flora, N. J. Geochemical Applications of the Simple Salt Approximation to the Lattice Energies of Complex Materials. Am. Mineral. 2005, 90, 488–496. DOI: 10.2138/am.2005.1537.
  • Schock, M. R.; Mueller, W.; Buelow, R. W. Laboratory Technique for Measurement of pH for Corrosion Control Studies and Water Not in Equilibrium with the Atmosphere. J. Am. Water Works Asses. 1980, 72, 304–306. DOI: 10.1002/j.1551-8833.1980.tb04516.x.
  • Allison, J. D.; Brown, D. S.; Novo-Gradac, K. J. MINTEQA2/PRODEFA2 Version 4 - a Geochemical Assessment Model for Environmental Systems. Athens, Georgia: United States Environmental Protection Agency; 1991.
  • Stumm, W.; Morgan, J. J. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. 3rd. ed.; New York: John Wiley & Sons Inc.; 1996.
  • Dermatas, D.; Cao, X.; Tsaneva, V.; Shen, G.; Grubb, D. G. Fate and Behavior of Metal(Loid) Contaminants in an Organic Matter-Rich Shooting Range Soil: Implications for Remediation. Water. Air. Soil Pollut: Focus 2006, 6, 143–155. DOI: 10.1007/s11267-005-9003-4.
  • Dermatas, D.; Dadachov, M.; Dutko, P.; Menounou, N.; Arienti, P.; Shen, G. Weathering of Lead in Fort Irwin Firing Range Soils. Global Nest: The Int. J. 2004, 6, 167–175. DOI: 10.30955/gnj.000251.
  • Schock, M. R. Understanding Corrosion Control Strategies for Lead. J. Am. Water Works Asses. 1989, 81, 88–100. DOI: 10.1002/j.1551-8833.1989.tb03244.x.
  • Lin, Y.-P.; Zhang, Y. Determination of PbO2 Formation Kinetics from the Chlorination of Pb(II) Carbonate Solids via Direct PbO2 Measurement. Environ. Sci. Technol. 2011, 45, 2338–2344. DOI: 10.1021/es1039826.
  • Nicholas Rees; Richard Fuller Children's Exposure to Lead Pollution Undermines a Generation of Future Potential; ISBN: 978-92-806-5140-9; UNICEF, Pure Earth Blacksmith Institute; 2021.
  • Schock, M. R.; Cantor, A. F.; Triantafyllidou, S.; Desantis, M. K.; Scheckel, K. G., Importance of Pipe Deposits to Lead and Copper Rule Compliance. J. Am. Water Works Asses. 2014, 106 (7), E336–E349. DOI: 10.5942/jawwa.2014.106.0064.
  • Sangameshwar, S. R.; Barnes, H. L., Supergene Processes in Zinc-Lead-Silver Sulfide Ores in Carbonates. Econ. Geol. 1983, 78, 1379–1397. DOI: 10.2113/gsecongeo.78.7.1379.
  • Rossini, F. D.; Wagman, D. D.; Evans, W. H.; Levine, S.; Jaffe, I., Selected values of chemical tbermodynamical properties. NBS Circular No. 500. 1952, 1268.
  • Ball, M.; Casson, M., Thermal Studies of Lead (II) Salts, VI. J. Therm. Anal. Calorim. 1983, 28 (2), 371–380, DOI: 10.1007/BF01983272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.