Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 59, 2024 - Issue 4
95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polyethylene terephthalate nanoplastics cause oxidative stress induced cell death in Saccharomyces cerevisiae

, , &
Pages 180-188 | Received 14 Apr 2023, Accepted 10 Apr 2024, Published online: 01 May 2024

References

  • PlasticEurope. Plastics - the Facts 2022. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/. (accessed Nov. 2022.
  • Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. DOI: 10.1126/sciadv.1700782.
  • Dube, E.; Okuthe, G. E. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. Int. J. Environ. Res. Public Health 2023, 20(17), 6667.
  • Gerdes, Z.; Ogonowski, M.; Nybom, I.; Ek, C.; Adolfsson-Erici, M.; Barth, A.; Gorokhova, E. Microplastic-Mediated Transport of PCBs? A Depuration Study with Daphnia Magna. PLoS One 2019, 14, e0205378. DOI: 10.1371/journal.pone.0205378.
  • Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environ. Sci. Technol. 2019, 53, 1748–1765. DOI: 10.1021/acs.est.8b05512.
  • Gündoğdu, S. Contamination of Table Salts from Turkey with Microplastics. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 1006–1014. DOI: 10.1080/19440049.2018.1447694.
  • Kosuth, M.; Mason, S. A.; Wattenberg, E. V. Anthropogenic Contamination of Tap Water, Beer, and Sea Salt. PLoS One 2018, 13, e0194970. DOI: 10.1371/journal.pone.0194970.
  • Prata, J. C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. DOI: 10.1016/j.envpol.2017.11.043.
  • Nisticò, R. Polyethylene Terephthalate (PET) in the Packaging Industry. Polym. Test 2020, 90, 106707. DOI: 10.1016/j.polymertesting.2020.106707.
  • Kankanige, D.; Babel, S. Smaller-Sized Micro-Plastics (MPs) Contamination in Single-Use PET-Bottled Water in Thailand. Sci. Total Environ. 2020, 717, 137232. DOI: 10.1016/j.scitotenv.2020.137232.
  • Oßmann, B. E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S. H.; Dicke, W. Small-Sized Microplastics and Pigmented Particles in Bottled Mineral Water. Water Res. 2018, 141, 307–316. DOI: 10.1016/j.watres.2018.05.027.
  • Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of Microplastics in Water by micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineral Water. Water Res. 2018, 129, 154–162. DOI: 10.1016/j.watres.2017.11.011.
  • Materić, D.; Kasper-Giebl, A.; Kau, D.; Anten, M.; Greilinger, M.; Ludewig, E.; Sebille, E.; Van; Röckmann, T.; Holzinger, R. Micro- and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environ. Sci. Technol. 2020, 54, 2353–2359. DOI: 10.1021/acs.est.9b07540.
  • Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 2017, 51, 13689–13697. DOI: 10.1021/acs.est.7b03667.
  • Pelegrini, K.; Pereira, T. C. B.; Maraschin, T. G.; Teodoro, L. D. S.; Basso, N. R. D. S.; De Galland, G. L. B.; Ligabue, R. A.; Bogo, M. R. Micro- and Nanoplastic Toxicity: A Review on Size, Type, Source, and Test-Organism Implications. Sci. Total Environ. 2023, 878, 162954. DOI: 10.1016/j.scitotenv.2023.162954.
  • Kik, K.; Bukowska, B.; Krokosz, A.; Sicińska, P. Oxidative Properties of Polystyrene Nanoparticles with Different Diameters in Human Peripheral Blood Mononuclear Cells (in Vitro Study). Int. J. Mol. Sci. 2021, 22, 4406. DOI: 10.3390/ijms22094406.
  • Rubio, L.; Barguilla, I.; Domenech, J.; Marcos, R.; Hernández, A. Biological Effects, Including Oxidative Stress and Genotoxic Damage, of Polystyrene Nanoparticles in Different Human Hematopoietic Cell Lines. J. Hazard. Mater. 2020, 398, 122900. DOI: 10.1016/j.jhazmat.2020.122900.
  • Hu, Q.; Wang, H.; He, C.; Jin, Y.; Fu, Z. Polystyrene Nanoparticles Trigger the Activation of p38 MAPK and Apoptosis via Inducing Oxidative Stress in Zebrafish and Macrophage Cells. Environ. Pollut. 2021, 269, 116075. DOI: 10.1016/j.envpol.2020.116075.
  • Bhattacharjee, S.; Ershov, D.; Islam, M. A.; Kämpfer, A. M.; Maslowska, K. A.; Gucht, J.; van der, G. M.; Alink, A. T. M.; Marcelis, H.; Zuilhof, I. M.; Rietjens, C. Role of Membrane Disturbance and Oxidative Stress in the Mode of Action Underlying the Toxicity of Differently Charged Polystyrene Nanoparticles. RSC Adv. 2014, 4, 19321–19330. DOI: 10.1039/C3RA46869K.
  • Vecchiotti, G.; Colafarina, S.; Aloisi, M.; Zarivi, O.; Di Carlo, P.; Poma, A. Genotoxicity and Oxidative Stress Induction by Polystyrene Nanoparticles in the Colorectal Cancer Cell Line HCT116. PLoS One 2021, 16, e0255120. DOI: 10.1371/journal.pone.0255120.
  • Sökmen, T. Ö.; Sulukan, E.; Türkoğlu, M.; Baran, A.; Özkaraca, M.; Ceyhun, S. B. Polystyrene Nanoplastics (20 nm) Are Able to Bioaccumulate and Cause Oxidative DNA Damages in the Brain Tissue of Zebrafish Embryo (Danio rerio). Neurotoxicology 2020, 77, 51–59. DOI: 10.1016/j.neuro.2019.12.010.
  • Shang, Y.; Wang, S.; Jin, Y.; Xue, W.; Zhong, Y.; Wang, H.; An, J.; Li, H. Polystyrene Nanoparticles Induced Neurodevelopmental Toxicity in Caenorhabditis elegans through Regulation of Dpy-5 and Rol-6. Ecotoxicol. Environ. Saf. 2021, 222, 112523. DOI: 10.1016/j.ecoenv.2021.112523.
  • Ozbek, O.; O Ulgen, K.; Ileri Ercan, N. The Toxicity of Polystyrene-Based Nanoparticles in Saccharomyces cerevisiae is Associated with Nanoparticle Charge and Uptake Mechanism. Chem. Res. Toxicol. 2021, 34, 1055–1068. DOI: 10.1021/acs.chemrestox.0c00468.
  • Ji, Y.; Wang, C.; Wang, Y.; Fu, L.; Man, M.; Chen, L. Realistic Polyethylene Terephthalate Nanoplastics and the Size- and Surface Coating-Dependent Toxicological Impacts on Zebrafish Embryos. Environ. Sci: Nano 2020, 7, 2313–2324. DOI: 10.1039/D0EN00464B.
  • Magrì, D.; Sánchez-Moreno, P.; Caputo, G.; Gatto, F.; Veronesi, M.; Bardi, G.; Catelani, T.; Guarnieri, D.; Athanassiou, A.; Pompa, P. P.; Fragouli, D. Laser Ablation as a Versatile Tool to Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano 2018, 12, 7690–7700. DOI: 10.1021/acsnano.8b01331.
  • Rodríguez-Hernández, A. G.; Alejandro Muñoz-Tabares, J.; Cristobal Aguilar-Guzmán, J.; Vazquez-Duhalt, R. A Novel and Simple Method for Polyethylene Terephthalate (PET) Nanoparticle Production. Environ. Sci: Nano 2019, 6, 2031–2036. DOI: 10.1039/C9EN00365G.
  • Zhang, H.; Zhang, S.; Duan, Z.; Wang, L. Pulmonary Toxicology Assessment of Polyethylene Terephthalate Nanoplastic Particles in Vitro. Environ. Int. 2022, 162, 107177. DOI: 10.1016/j.envint.2022.107177.
  • Aguilar-Guzmán, J. C.; Bejtka, K.; Fontana, M.; Valsami-Jones, E.; Villezcas, A. M.; Vazquez-Duhalt, R.; Rodríguez-Hernández, A. G. Polyethylene Terephthalate Nanoparticles Effect on RAW 264.7 Macrophage Cells. Micropl. Nanopl. 2022, 2(1), 9. DOI: 10.1186/s43591-022-00027-1.
  • Caldwell, J.; Lehner, R.; Balog, S.; Rhême, C.; Gao, X.; Septiadi, D.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Fluorescent Plastic Nanoparticles to Track Their Interaction and Fate in Physiological Environments. Environ. Sci. Nano 2021, 8, 502–513. DOI: 10.1039/D0EN00944J.
  • Johnson, L. M.; Mecham, J. B.; Krovi, S. A.; Moreno Caffaro, M. M.; Aravamudhan, S.; Kovach, A. L.; Fennell, T. R.; Mortensen, N. P. Fabrication of Polyethylene Terephthalate (PET) Nanoparticles with Fluorescent Tracers for Studies in Mammalian Cells. Nanoscale Adv. 2021, 3, 339–346. DOI: 10.1039/d0na00888e.
  • Bashirova, N.; Poppitz, D.; Klüver, N.; Scholz, S.; Matysik, J.; Alia, A. A Mechanistic Understanding of the Effects of Polyethylene Terephthalate Nanoplastics in the Zebrafish (Danio rerio) Embryo. Sci. Rep. 2023, 13, 1891. DOI: 10.1038/s41598-023-28712-y.
  • Dos Santos, S. C.; Teixeira, M. C.; Cabrito, T. R.; Sá-Correia, I. Yeast Toxicogenomics: Genome-Wide Responses to Chemical Stresses with Impact in Environmental Health, Pharmacology, and Biotechnology. Front. Genet. 2012, 3, 63. DOI: 10.3389/fgene.2012.00063.
  • Thomas, P. B.; Cavusoglu, E. E.; Kaluc, N. Sublethal Concentrations of High Glucose Prolong Mitotic Arrest in a Spindle Assembly Checkpoint Activity Dependent Manner in Budding Yeast. Biologia 2021, 76, 3883–3890. DOI: 10.1007/s11756-021-00912-9.
  • Mat Nanyan, N. S. B.; Watanabe, D.; Sugimoto, Y.; Takagi, H. Involvement of the Stress-Responsive Transcription Factor Gene MSN2 in the Control of Amino Acid Uptake in Saccharomyces cerevisiae. FEMS Yeast Res. 2019, 19(5), foz052.
  • Capece, A.; Votta, S.; Guaragnella, N.; Zambuto, M.; Romaniello, R.; Romano, P. Comparative Study of Saccharomyces cerevisiae Wine Strains to Identify Potential Marker Genes Correlated to Desiccation Stress Tolerance. FEMS Yeast Res. 2016, 16(3), fow015.
  • Kim, D.; Hahn, J.-S. Roles of the Yap1 Transcription Factor and Antioxidants in Saccharomyces cerevisiae’s Tolerance to Furfural and 5-Hydroxymethylfurfural, Which Function as Thiol-Reactive Electrophiles Generating Oxidative Stress. Appl. Environ. Microbiol. 2013, 79, 5069–5077. DOI: 10.1128/AEM.00643-13.
  • Rajvanshi, P. K.; Arya, M.; Rajasekharan, R. The Stress-Regulatory Transcription Factors Msn2 and Msn4 Regulate Fatty Acid Oxidation in Budding Yeast. J. Biol. Chem. 2017, 292, 18628–18643. DOI: 10.1074/jbc.M117.801704.
  • Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2− ΔΔCT Method. Methods 2001, 25, 402–408. DOI: 10.1006/meth.2001.1262.
  • Thomas, P. B.; Kaluç, N.; Aybastıer, Ö. SLX5 Deletion Confers Tolerance to Oxidative Stress in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2022, 369(1), fnac077.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1006/abio.1976.9999.
  • Pereira, A. P.; dos, S.; Silva, M. H. P.; da, É. P.; Lima, A.; Paula, S.; dos, F.; Tommasini, J. Processing and Characterization of PET Composites Reinforced with Geopolymer Concrete Waste. Mat. Res. 2017, 20, 411–420. DOI: 10.1590/1980-5373-mr-2017-0734.
  • De Wever, V.; Reiter, W.; Ballarini, A.; Ammerer, G.; Brocard, C. A Dual Role for PP1 in Shaping the Msn2-Dependent Transcriptional Response to Glucose Starvation. EMBO J. 2005, 24, 4115–4123. DOI: 10.1038/sj.emboj.7600871.
  • Gasch, A. P.; Spellman, P. T.; Kao, C. M.; Carmel-Harel, O.; Eisen, M. B.; Storz, G.; Botstein, D.; Brown, P. O. Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Mol. Biol. Cell. 2000, 11, 4241–4257. DOI: 10.1091/mbc.11.12.4241.
  • Sadeh, A.; Movshovich, N.; Volokh, M.; Gheber, L.; Aharoni, A. Fine-Tuning of the Msn2/4-Mediated Yeast Stress Responses as Revealed by Systematic Deletion of Msn2/4 Partners. Mol. Biol. Cell. 2011, 22, 3127–3138. DOI: 10.1091/mbc.E10-12-1007.
  • Toone, W. M.; Jones, N. Stress-Activated Signalling Pathways in Yeast. Genes Cells. 1998, 3, 485–498. DOI: 10.1046/j.1365-2443.1998.00211.x.
  • Nakazawa, N.; Yanata, H.; Ito, N.; Kaneta, E.; Takahashi, K. Oxidative Stress Tolerance of a Spore Clone Isolated from Shirakami Kodama Yeast Depends on Altered Regulation of Msn2 Leading to Enhanced Expression of ROS-Degrading Enzymes. J. Gen. Appl. Microbiol. 2018, 64, 149–157. DOI: 10.2323/jgam.2017.11.002.
  • Ouyang, X.; Tran, Q. T.; Goodwin, S.; Wible, R. S.; Sutter, C. H.; Sutter, T. R. Yap1 Activation by H2O2 or Thiol-Reactive Chemicals Elicits Distinct Adaptive Gene Responses. Free Radic. Biol. Med. 2011, 50, 1–13. DOI: 10.1016/j.freeradbiomed.2010.10.697.
  • Rodrigues-Pousada, C.; Devaux, F.; Caetano, S. M.; Pimentel, C.; Silva, S.; Da; Cordeiro, A. C.; Amaral, C. Yeast AP-1 like Transcription Factors (Yap) and Stress Response: A Current Overview. Microb. Cell 2019, 6, 267–285. DOI: 10.15698/mic2019.06.679.
  • Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.; Grune, T.; et al. Pathological Aspects of Lipid Peroxidation. Free Radic. Res. 2010, 44, 1125–1171. DOI: 10.3109/10715762.2010.498478.
  • Bayat, N.; Rajapakse, K.; Marinsek-Logar, R.; Drobne, D.; Cristobal, S. The Effects of Engineered Nanoparticles on the Cellular Structure and Growth of Saccharomyces cerevisiae. Nanotoxicology 2014, 8, 363–373. DOI: 10.3109/17435390.2013.788748.
  • Nomura, T.; Miyazaki, J.; Miyamoto, A.; Kuriyama, Y.; Tokumoto, H.; Konishi, Y. Exposure of the Yeast Saccharomyces cerevisiae to Functionalized Polystyrene Latex Nanoparticles: Influence of Surface Charge on Toxicity. Environ. Sci. Technol. 2013, 47, 3417–3423. DOI: 10.1021/es400053x.
  • Madeo, F.; Herker, E.; Maldener, C.; Wissing, S.; Lächelt, S.; Herlan, M.; Fehr, M.; Lauber, K.; Sigrist, S. J.; Wesselborg, S.; Fröhlich, K. U. A Caspase-Related Protease Regulates Apoptosis in Yeast. Mol. Cell. 2002, 9, 911–917. DOI: 10.1016/s1097-2765(02)00501-4.
  • Huang, W. P.; Scott, S. V.; Kim, J.; Klionsky, D. J. The Itinerary of a Vesicle Component, Aut7p/Cvt5p, Terminates in the Yeast Vacuole via the Autophagy/Cvt Pathways. J. Biol. Chem. 2000, 275, 5845–5851. DOI: 10.1074/jbc.275.8.5845.
  • Xie, Z.; Nair, U.; Klionsky, D. J. Atg8 Controls Phagophore Expansion during Autophagosome Formation. Mol. Biol. Cell. 2008, 19, 3290–3298. DOI: 10.1091/mbc.e07-12-1292.
  • Mizushima, N.; Levine, B.; Cuervo, A. M.; Klionsky, D. J. Autophagy Fights Disease through Cellular Self-Digestion. Nature 2008, 451, 1069–1075. DOI: 10.1038/nature06639.
  • Yun, H. R.; Jo, Y. H.; Kim, J.; Shin, Y.; Kim, S. S.; Choi, T. G. Roles of Autophagy in Oxidative Stress. Int. J. Mol. Sci. 2020, 21(9), 3289.
  • Annangi, B.; Villacorta, A.; Vela, L.; Tavakolpournegari, A.; Marcos, R.; Hernández, A. Effects of True-to-Life PET Nanoplastics Using Primary Human Nasal Epithelial Cells. Environ. Toxicol. Pharmacol. 2023, 100, 104140. DOI: 10.1016/j.etap.2023.104140.
  • Han, S.-W.; Choi, J.; Ryu, K.-Y. Stress Response of Mouse Embryonic Fibroblasts Exposed to Polystyrene Nanoplastics. Int. J. Mol. Sci. 2021, 22(4), 2094.
  • Lu, Y.-Y.; Li, H.; Ren, H.; Zhang, X.; Huang, F.; Zhang, D.; Huang, Q.; Zhang, X. Size-Dependent Effects of Polystyrene Nanoplastics on Autophagy Response in Human Umbilical Vein Endothelial Cells. J. Hazard. Mater. 2022, 421, 126770. DOI: 10.1016/j.jhazmat.2021.126770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.