212
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Quantitative structure–mesothelioma potency model optimization for complex mixtures of elongated particles in rat pleura: A retrospective study

, , , , &

References

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716–23. doi:10.1109/TAC.1974.1100705.
  • Anthony, J. W., R. A. Bideaux, K. W. Bladh, and M. C. Nichols, eds. 2001. Handbook of mineralogy, Vol. 29. Mineralogical Society of America, Chantilly, VA. http://www.handbookofmineralogy.org ( accessed May 2015).
  • Aust, A. E., P. M. Cook, and R. F. Dodson. 2011. Morphological and chemical mechanisms of elongated mineral particle toxicities. Journal of Toxicology and Environmental Health, Part B 14:40–75. doi:10.1080/10937404.2011.556046.
  • Baris, Y. I., and P. Grandjean. 2006. Prospective study of mesothelioma mortality in Turkish villages with exposure to fibrous zeolite. Journal of the National Cancer Institute 98:414–17. doi:10.1093/jnci/djj106.
  • Bermudez, E. 1994. Recovery of particles from the pleural cavity using agarose casts: A novel method for the determination of fiber dose to the rat pleura. Inhalation Toxicology 6:115–24. doi:10.3109/08958379409029699.
  • Bertrand, R., and H. Pezerat. 1980. Fibrous glass: Carcinogenicity and dimensional characteristics. In IARC: Biological effects of mineral fibers, ed. J. C. Wagner, 901–11. Lyon, France: IARC.
  • Bonneau, L. C., C. Malard, and H. Pezerat. 1986. Studies on surface properties of asbestos. Environmental Research 41:268–75. doi:10.1016/S0013-9351(86)80188-8.
  • Boulanger, G., P. Andujar, J.-C. Pairon, M.-A. Billon-Galland, C. Dion, P. Dumortier, P. Brochard, A. Sobaszek, P. Bartsch, C. Paris, and M.-C. Jaurand. 2014. Quantification of short and long asbestos fibers to assess asbestos exposure: A review of fiber size toxicity. Environmental Health 13:59. doi:10.1186/1476-069X-13-59.
  • Boutin, C., P. Dumortier, F. Rey, J. Viallat, and P. De Vuyst. 1996. Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Thoracoscopic and mineralogic study. American Journal of Respiratory and Critical Care Medicine 153:444–49. doi:10.1164/ajrccm.153.1.8542156.
  • Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference. New York, NY: Springer-Verlag.
  • Carbone, M., B. H. Ly, R. F. Dodson, I. Pagano, P. T. Morris, U. A. Dogan, A. F. Gazdar, H. Pass, and H. Yang. 2012. Malignant mesothelioma: Facts, myths, and hypotheses. Journal of Cellular Physiology 227:44–58. doi:10.1002/jcp.22724.
  • Case, B. W., J. L. Abraham, G. Meeker, F. D. Pooley, and K. E. Pinkerton. 2011. Applying definitions of “asbestos” to environmental and “low-dose” exposure levels and health effects, particularly malignant mesothelioma. Journal of Toxicology and Environmental Health, Part B 14:3–39. doi:10.1080/10937404.2011.556045.
  • Churg, A., and B. Wiggs. 1984. Fiber size and number in amphibole asbestos-induced mesothelioma. American Journal of Pathology 115:437–42.
  • Coffin, D. L., P. M. Cook, and J. Creason. 1992. Relative mesothelioma induction in rats by mineral fibers: Comparison with residual pulmonary mineral fiber number and epidemiology. Inhalation Toxicology 4:273–300. doi:10.3109/08958379209145671.
  • Coffin, D. L., L. D. Palekar, and P. M. Cook. 1982. Tumorigenesis by a ferroactinolite mineral. Toxicology Letters 13:143–49. doi:10.1016/0378-4274(82)90202-8.
  • Cook, P. M. 1979. Preparation of extrapulmonary tissues and body fluids for quantitative transmission electron microscope analysis of asbestos and other mineral particle concentrations. Annals of the New York Academy of Sciences 330:717–24. doi:10.1111/nyas.1979.330.issue-1.
  • Cook, P. M., L. D. Palekar, and D. L. Coffin. 1982. Interpretation of the carcinogenicity of amosite asbestos and ferroactinolite on the basis of retained fiber dose and characteristics in vivo. Toxicology Letters 13:151–58. doi:10.1016/0378-4274(82)90203-X.
  • Cook, P. M., J. Robbins, D. D. Endicott, K. B. Lodge, P. D. Guiney, M. K. Walker, E. W. Zabel, and R. E. Peterson. 2003. Effects of aryl hydrocarbon receptor mediated early life stage toxicity on lake trout populations in Lake Ontario during the 20th century. Environmental Science & Technology 37:3864–77. doi:10.1021/es034045m.
  • Davis, J., J. Addison, C. McIntosh, B. G. Miller, and K. Niven. 1991. Variations in the carcinogenicity of tremolite dust samples of differing morphology. Annals of the New York Academy of Sciences 643:473–90. doi:10.1111/nyas.1991.643.issue-1.
  • Dement, J. M., and K. M. Wallingford. 1990. Comparison of phase contrast and electron microscopic methods for evaluation of occupational asbestos exposures. Applied Occupational and Environmental Hygiene 5 (4):242–47.
  • Dodson, R. F., M. F. O’Sullivan, J. Huang, D. B. Holiday, and S. P. Hammar. 2000. Asbestos in extrapulmonary sites, omentum and mesentery. Chest 117:486–93. doi:10.1378/chest.117.2.486.
  • Dodson, R. F., M. F. O’Sullivan, D. R. Brooks, and J. R. Bruce. 2001. Asbestos content of omentum and mesentery in nonoccupationally exposed individuals. Toxicology and Industrial Health 17:138–43.
  • Dodson, R. F., M. A. L. Atkinson, and J. L. Levin. 2003. Asbestos fiber length as related to potential pathogenicity: A critical review. American Journal of Industrial Medicine 44:291–97.
  • Donaldson, K., F. A. Murphy, R. Duffin, and C. A. Poland. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: A review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle and Fibre Toxicology 7:5. doi:10.1186/1743-8977-7-5.
  • Dumortier, P., L. Coplu, I. Brouck, S. Emri, T. Selcuk, V. De Maertelaer, P. De Vuyst, and I. Baris. 2001. Erionite bodies and fibres in bronchoalveolar lavage fluid (BALF) of residents from Tuzkoy, Cappadocia, Turkey. Occupational and Environmental Medicine 58:261–66. doi:10.1136/oem.58.4.261.
  • Duncan, K. E., P. M. Cook, S. H. Gavett, L. A. Dailey, R. K. Mahoney, A. J. Ghio, V. L. Roggli, and R. B. Devlin. 2014. In vitro determinants of asbestos fiber toxicity: Effect on the relative toxicity of Libby amphibole in primary human airway epithelial cells. Particle and Fibre Toxicology 11:2. doi:10.1186/1743-8977-11-2.
  • Emri, S., A. Demir, M. Dogan, H. Akay, B. Bozkurt, M. Carbone, and I. Baris. 2002. Lung diseases due to environmental exposures to erionite and asbestos in Turkey. Toxicology Letters 127:251–57. doi:10.1016/S0378-4274(01)00507-0.
  • Gandolfi, N. B., A. F. Gualtieri, S. Pollastri, E. Tibaldi, and F. Belpoggi. 2015. Assessment of asbestos body formation by high resolution FEG–SEM after exposure of Sprague–Dawley rats to chrysotile, crocidolite, or erionite. Journal of Hazardous Materials 306:95–104.
  • Gelzleichter, T. R., E. Bermudez, J. B. Mangum, B. A. Wong, J. I. Everitt, and O. R. Moss. 1996. Pulmonary and pleural response in Fischer 344 rats following short-term inhalation of synthetic vitreous fiber I. Quantitation of lung and pleural fiber responses. Fundamental and Applied Toxicology 30:31–38. doi:10.1006/faat.1996.0040.
  • Guldberg, M., V. R. Christensen, M. Perander, B. Zoitos, A. R. Koenig, and K. Sebastian. 1998. Measurement of In-vitro fiber dissolution rate at acidic pH. Annals of Occupational Hygiene 42:233–43.
  • Hocking, R. R. 1976. A Biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics 32:1–49. doi:10.2307/2529336.
  • Horton, K., V. Kapil, T. Larson, O. Muravov, N. Melnikova, and B. Anderson. 2006. A review of the federal government’s health activities in response to asbestos-contaminated ore found in Libby, Montana. Inhalation Toxicology 18:925–40. doi:10.1080/08958370600835161.
  • Macdonald, J. L., and A. B. Kane. 1997. Mesothelial cell proliferation and biopersistence of wollastonite and crocidolite asbestos fibers. Fundamental and Applied Toxicology 38:173–83. doi:10.1006/faat.1997.2344.
  • Manly, F. J. 2001. Randomization bootstrap and Monte Carlo methods in biology, 37–67. New York, NY: Chapman & Hall/CRC.
  • MathWorks, Inc. 2015 MATLAB R2015a. Natick, MA: MathWorks, Inc.
  • Mercer, R. R., A. F. Hubbs, J. F. Scabillioni, L. Wang, L. A. Battelli, D. Schewegler-Berry, V. Castranova, and D. W. Porter. 2010. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Particle and Fibre Toxicology 7:1–11. doi:10.1186/1743-8977-7-28.
  • Metintas, M., G. Hillerdal, and S. Metintas. 1999. Malignant mesothelioma due to environmental exposure to erionite: Follow-up of a Turkish emigrant cohort. European Respiratory Journal 13:523–26. doi:10.1183/09031936.99.13352399.
  • Metintas, M., G. Hillerdal, S. Metintas, and P. Dumortier. 2010. Endemic malignant mesothelioma: Exposure to erionite is more important than genetic factors. Archives of Environmental & Occupational Health 65:86–93. doi:10.1080/19338240903390305.
  • Miserocchi, G., G. Sancini, F. Mantegazza, and G. Chiappino. 2008. Translocation pathways for inhaled asbestos fibers. Environmental Health 7:4–11. doi:10.1186/1476-069X-7-4.
  • Monchaux, G., J. Bignon, M. C. Jaurand, J. Lafuma, P. Sebastien, R. Masse, A. Hirsch, and J. Goni. 1981. Mesotheliomas in rats following inoculation with acid-leached chrysotile asbestos and other mineral fibres. Carcinogenesis 2:229–36.
  • Morton, P., D. Marklund, S. Kohlbry, D. Longrie-Kline, C. Harper, J. Tan, and G. J. Niemi. 1985. Properties of fine particles which govern their biological activity, Vol. 1. University of Minnesota–Duluth, Cooperative Agreement CR807482 between U.S. EPA and University of Minnesota–Duluth.
  • Mossman, B., M. Lippmann, T. Hesterberg, K. Kelsey, A. Barchowskey, and J. Bonner. 2011. Pulmonary endpoints following inhalation exposure asbestos. Journal of Toxicology and Environmental Health, Part B 14:76–121. doi:10.1080/10937404.2011.556047.
  • National Institute for Occupational Safely and Health. 1994 Asbestos and other fibers by PCM. Method 7400, Issue 2. In NIOSH manual of analytical methods, 4th ed. DHHS (NIOSH) Publication No. 2003–154. Cincinnati, OH: National Institute for Occupational Safety and Health.
  • National Toxicology Program. 2014. Report on carcinogens, Thirteenth edition. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service. http://ntp.niehs.nih.gov/pubhealth/roc/roc13/.
  • Oberdorster, G., P. E. Morrow, and K. Spurny. 1988. Size dependent lymphatic short term clearance of amosite fibres in the lung. Annals of Occupational Hygiene 32:149–56. doi:10.1093/annhyg/32.inhaled_particles_VI.149.
  • Oehlert, G. W. 1991. A reanalysis of the Stanton et al. pleural sarcoma data. Environmental Research 54:194–205. doi:10.1016/S0013-9351(05)80101-X.
  • Patnaik, P. 2003. Handbook of inorganic chemicals. New York, NY: McGraw-Hill.
  • Pott, F. 1978. Some aspects on the dosimetry of the carcinogenic potency of asbestos and other fibrous dusts. Staub-Reinhaltung der Luft 38:486–89.
  • Rozalen, M., M. E. Ramos, F. J. Huertas, S. Fiore, and F. Gervilla. 2013. Dissolution kinetics and biodurability of tremolite particles in mimicked lung fluids. Effect of citrate and oxalate. Journal of Asian Earth Sciences 77:318–26.
  • Searl, A., D. Buchanan, R. T. Cullen, A. D. Jones, B. G. Miller, and C. A. Soutar. 1999. Biopersistence and durability of nine mineral fibre types in rat lungs over 12 months. Annals of Occupational Hygiene 43:143–53. doi:10.1093/annhyg/43.3.143.
  • Stanton, M. F., M. Layard, A. Tegeris, E. Miller, M. May, E. Morgan, and A. Smith. 1981. Relation of particle dimension to carcinogenicity of amphibole asbestoses and other fibrous minerals. Journal of the National Cancer Institute 67:965–75.
  • Stanton, M. F., and C. Wrench. 1972. Mechanisms of mesothelioma induction with asbestos and fibrous glass. Journal of the National Cancer Institute 48:797–816.
  • Suzuki, Y., and R. Y. Steven. 2002. Asbestos fibers contributing to the induction of human malignant mesothelioma. Annals of the New York Academy of Sciences 982 (1):160–76.
  • Suzuki, Y., and S. R. Yuen. 2001. Asbestos tissue burden study on human malignant mesothelioma. Industrial Health 39:150–60. doi:10.2486/indhealth.39.150.
  • Timbrell, V., T. Ashcroft, B. Goldstein, F. Heyworth, L. O. Meurman, R. E. G. Rendall, J. A. Reynolds, and K. B. Shilkin. 1988. Relationships between retained amphibole fibres and fibrosis in human lung tissue specimens. Annals of Occupational Hygiene 32:323–40. doi:10.1093/annhyg/32.inhaled_particles_VI.323.
  • Uibu, T., E. Vanhala, A. Sajantila, P. Lunetta, P. Makela-Bengs, S. Goebeler, M. Jantti, and A. Tossavainen. 2009. Asbestos fibers in para-aortic and mesenteric lymph nodes. American Journal of Industrial Medicine 52:464–70. doi:10.1002/ajim.v52:6.
  • Van den Berg, M., L. S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. Walker, and R. E. Peterson. 2006. The 2005 World Health Organization revaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences 93:223–41. doi:10.1093/toxsci/kfl055.
  • Wagner, J. C., G. Berry, and V. Timbrell. 1973. Mesothelioma in rats after inoculation with asbestos and other materials. British Journal of Cancer 28:173–85.
  • Wylie, A. G., C. H. Skinner, J. Marsh, H. Snyder, C. Garzione, D. Hodkinson, R. Winters, and B. Mossman. 1997. Mineralogical features associated with cytotoxic and proliferative effects of fibrous talc and asbestos on rodent tracheal epithelial and pleural mesothelial cells. Toxicology and Applied Pharmacology 147:143–50. doi:10.1006/taap.1997.8276.
  • Wylie, A. G., R. L. Virta, and J. M. Segreti. 1987. Characterization of mineral population by index particle: Implication for the Stanton hypothesis. Environmental Research 43:427–39. doi:10.1016/S0013-9351(87)80043-9.
  • Zoitos, B. K., A. De Meringo, E. Rouyer, S. Thelohan, J. Bauer, B. Law, P. M. Boymel, J. R. Olson, V. R. Christensen, M. Guldberg, A. R. Koenig, and M. Perander. 1997. In vitro measurement of fiber dissolution rate relevant to biopersistence at neutral pH: An interlaboratory round robin. Inhalation Toxicology 9:525–40. doi:10.1080/089583797198051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.