384
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents

, &

References

  • Abd-Elrahman, I., K. Meir, H. Kosuge, Y. Ben-Nun, T. Weiss Sadan, C. Rubinstein, Y. Samet, M. V. McConnell, and G. Blum. 2016. Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke 47:1101–08. doi:10.1161/STROKEAHA.115.011573.
  • Aguda, A. H., P. Panwar, X. Du, N. T. Nguyen, G. D. Brayer, and D. Brömme. 2014. Structural basis of collagen fiber degradation by cathepsin K. Proceedings of the National Academy of Sciences of the United States of America 111:17474–79. doi:10.1073/pnas.1414126111.
  • Aits, S., and M. Jaattela. 2013. Lysosomal cell death at a glance. Journal of Cell Science 126:1905–12. doi:10.1242/jcs.091181.
  • Alaraby, M., B. Annangi, R. Marcos, and A. Hernández. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. Journal of Toxicology and Environmental Health, Part B 19:65–104. doi:10.1080/10937404.2016.1166466.
  • Allan, E. R., and R. M. Yates. 2015. Redundancy between cysteine cathepsins in murine experimental autoimmune encephalomyelitis. Plos One 10:e0128945. doi:10.1371/journal.pone.0128945.
  • Alroy, J., C. Garganta, and G. Wiederschain. 2014. Secondary biochemical and morphological consequences in lysosomal storage diseases. Biochemistry 79:619–36.
  • Alroy, J., and J. A. Lyons. 2014. Lysosomal storage diseases. Journal of Inborn Errors of Metabolism and Screening 2014:1–20.
  • Appelqvist, H., C. Nilsson, B. Garner, A. J. Brown, K. Kågedal, and K. Öllinger. 2011. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. The American Journal of Pathology 178:629–39. doi:10.1016/j.ajpath.2010.10.030.
  • Appelqvist H, Wäster P, Kågedal K, Öllinger K. The lysosome: from waste bag to potential therapeutic target. Journal of Molecular Cell Biology. 2013. Aug;5(4):214–26. doi: 10.1093/jmcb/mjt022.
  • Bae, E. J., N. Y. Yang, C. Lee, S. Kim, H. J. Lee, and S. J. Lee. 2015. Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of α-synuclein aggregates. Cell Death & Disease 6:e1901. doi:10.1038/cddis.2015.283.
  • Baugh, M., D. Black, P. Westwood, E. Kinghorn, K. McGregor, J. Bruin, W. Hamilton, M. Dempster, C. Claxton, J. Cai, J. Bennett, C. Long, H. McKinnon, P. Vink, L. Den Hoed, M. Gorecka, K. Vora, E. Grant, M. D. Percival, A. M. Boots, and M. J. Van Lierop. 2011. Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity. Journal of Autoimmunity 36:201–09. doi:10.1016/j.jaut.2011.01.003.
  • Bonner, J. C., R. M. Silva, A. J. Taylor, J. M. Brown, S. C. Hilderbrand, V. Castranova, D. Porter, A. Elder, G. Oberdörster, J. R. Harkema, L. A. Bramble, T. J. Kavanagh, D. Botta, A. Nel, and K. E. Pinkerton. 2013. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives 121:676–82. doi:10.1289/ehp.1205693.
  • Brojatsch, J., H. Lima, A. K. Kar, L. S. Jacobson, S. M. Muehlbauer, K. Chandran, and F. Diaz-Griffero. 2014. A proteolytic cascade controls lysosome rupture and necrotic cell death mediated by lysosome-destabilizing adjuvants. Plos One 9:e95032. doi:10.1371/journal.pone.0095032.
  • Brömme, D., and F. Lecaille. 2009. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opinion on Investigational Drugs 18:585–600. doi:10.1517/13543780902832661.
  • Bühling, F., C. Röcken, F. Brasch, R. Hartig, Y. Yasuda, P. Saftig, D. Brömme, and T. Welte. 2004. Pivotal role of cathepsin K in lung fibrosis. The American Journal of Pathology 164:2203–16. doi:10.1016/S0002-9440(10)63777-7.
  • Bunderson-Schelvan, M., R. F. Hamilton Jr, K. L. Trout, F. Jessop, M. Gulumian, and A. Holian. 2016. Approaching a unified theory for particle-induced inflammation. In Biological effects of fibrous and particulate substances, ed. T. Otsuki, 51–76. Springer Japan.
  • Chakraborty, S., V. Castranova, M. K. Perez, and G. Piedimonte. 2017. Nanoparticles-induced apoptosis of human airway epithelium is mediated by proNGF/p75ntr signaling. Journal of Toxicology and Environmental Health, Part A 80:53–68. doi:10.1080/15287394.2016.1238329.
  • Chandra, G., M. B. Bagh, S. Peng, A. Saha, C. Sarkar, M. Moralle, Z. Zhang, and A. B. Mukherjee. 2015. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders. Human Molecular Genetics 24:5416–32. doi:10.1093/hmg/ddv266.
  • Christensen, J., and V. P. Shastri. 2015. Matrix-metallopreoteinase-9 is cleaved and activated by cathepsin K. BMC Research Notes 8:322–30. doi:10.1186/s13104-015-1284-8.
  • Clark, A. J., and H. R. Petty. 2016. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells. Nanotechnology 27:075103. doi:10.1088/0957-4484/27/7/075103.
  • Committee to Develop a Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials; National Research Council. 2012. A research strategy for environmental, health, and safety aspects of engineered nanomaterials. Washington, DC: National Academies Press (US); 2012 Background. https://www.ncbi.nlm.nih.gov/books/NBK189513/.
  • Costantino, C. M., H. L. Ploegh, and D. A. Hafler. 2009. Cathepsin S regulates class II MHC processing in human CD4+ HLA-DR+ T cells. The Journal of Immunology 183:945–52. doi:10.4049/jimmunol.0900921.
  • Cuddy, M. F., A. R. Poda, R. D. Moser, C. A. Weiss, C. 3. Cairns, and J. A. Steevens. 2016. A weight-of-evidence approach to identify nanomaterials in consumer products: A case study of nanoparticles in commercial sunscreens. Journal of Exposure Science and Environmental Epidemiology 26:26–34. doi:10.1038/jes.2015.51.
  • Däbritz, J., T. Weinhage, G. Varga, T. Wirth, J. M. Ehrchen, K. Barczyk-Kahlert, J. Roth, T. Schwarz, and D. Foell. 2016. Activation-dependent cell death of human monocytes is a novel mechanism of fine-tuning inflammation and autoimmunity. European Journal of Immunology 46:1997–2007. doi:10.1002/eji.201545802.
  • Dejica, V. M., J. S. Mort, S. Laverty, M. D. Percival, J. Antoniou, D. J. Zukor, and A. R. Poole. 2008. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. The American Journal of Pathology 173:161–69. doi:10.2353/ajpath.2008.070494.
  • Donaldson, K., C. A. Poland, and R. P. Schins. 2010. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology 4:414–20. doi:10.3109/17435390.2010.482751.
  • Donaldson, K., and A. Seaton. 2012. A short history of the toxicology of inhaled particles. Particle and Fibre Toxicology 9:13. doi:10.1186/1743-8977-9-13.
  • Dostert, C., V. Pétrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–77. doi:10.1126/science.1156995.
  • Duong Le, T., A. T. Leung, and B. Langdahl. 2016. Cathepsin k inhibition: A new mechanism for the treatment of osteoporosis. Calcified Tissue International 98:381–97. doi:10.1007/s00223-015-0051-0.
  • EPA, United States Environmental Protection Agency. 2011. Nanotechnology: Applications for Environmental Remediation CLU#IN Technology Focus Area Fact Sheet. Solid Waste and Emergency Response (5106P): Available at [https://clu-in.org/download/remed/nano-fact-sheet-2011.pdf]
  • EPA, United States Environmental Protection Agency. 2014. Emerging contaminant—Nanomaterials. Solid waste and emergency response: (2015P). EPA 505-F-11-009.
  • Farcas, M. T., E. R. Kisin, A. L. Menas, D. W. Gutkin, A. Star, R. S. Reiner, N. Yanamala, K. Savolainen, and A. A. Shvedova. 2016. Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. Journal of Toxicology and Environmental Health, Part A 79:984–97. doi:10.1080/15287394.2016.1211045.
  • Figueiredo, J.-L., M. Aikawa, C. Zheng, J. Aaron, L. Lax, P. Libby, J. L. De Lima Filho, S. Gruener, J. Fingerle, W. Haap, G. Hartmann, and E. Aikawa. 2015. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease. The American Journal of Pathology 185:1156–66. doi:10.1016/j.ajpath.2014.11.026.
  • Flynn, T., and C. Wei. 2005. The pathway to commercialization for nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine 1:47–51. doi:10.1016/j.nano.2004.11.010.
  • Fonovic, M., and B. Turk. 2014. Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. PROTEOMICS - Clinical Applications 8:416–26. doi:10.1002/prca.201300085.
  • Fujii, H., S. M. Ivison, H. Shimizu, R. Kajiwara, A. Kariminia, M. Yan, J. P. Dutz, and K. R. Schultz. 2012. Inhibition of cathepsin S reduces allogeneic T cell priming but not graft-versus-host disease against minor histocompatibility antigens. Biology of Blood and Marrow Transplantation 18:546–56. doi:10.1016/j.bbmt.2011.11.027.
  • Gagne, F., J. Auclair, M. Fortier, A. Bruneau, M. Fournier, P. Turcotte, M. Pilote, and C. Gagnon. 2013. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel elliptio complanata. Journal of Toxicology and Environmental Health, Part A 76:767–77. doi:10.1080/15287394.2013.818602.
  • Gauthier, S., G. Kaur, W. Mi, B. Tizon, and E. Levy. 2011. Protective mechanisms by cystatin C in neurodegenerative diseases. Frontiers in Bioscience 3:541–54.
  • Gocheva, V., H. W. Wang, B. B. Gadea, T. Shree, K. E. Hunter, A. L. Garfall, T. Berman, and J. A. Joyce. 2010. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes & Development 24:241–55. doi:10.1101/gad.1874010.
  • Gocheva, V., W. Zeng, D. Ke, D. Klimstra, T. Reinheckel, C. Peters, D. Hanahan, and J. A. Joyce. 2006. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development 20:543–56. doi:10.1101/gad.1407406.
  • Gomez-Auli, A., L. E. Hillebrand, M. L. Biniossek, C. Peters, T. Reinheckel, and O. Schilling. 2016. Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers. Biochimie 122:88–98. doi:10.1016/j.biochi.2015.10.009.
  • Gondi, C. S., S. S. Lakka, N. Yanamandra, W. C. Olivero, D. H. Dinh, M. Gujrati, C. H. Tung, R. Weissleder, and J. S. Rao. 2004. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Research 64:4069–77. doi:10.1158/0008-5472.CAN-04-1243.
  • Guha, S., and H. Padh. 2008. Cathepsins: Fundamental effectors of endolysosomal proteolysis. Indian Journal of Biochemistry & Biophysics 45:75–90.
  • Hamilton, R. F., S. Buckingham, and A. Holian. 2014. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. International Journal of Molecular Sciences 15:6815–30. doi:10.3390/ijms15046815.
  • Hamilton, R. F., M. Buford, C. Xiang, N. Wu, and A. Holian. 2012. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhalation Toxicology 24:995–1008. doi:10.3109/08958378.2012.745633.
  • Hartmann, N. B., K. A. Jensen, A. Baun, K. Rasmussen, H. Rauscher, R. Tantra, D. Cupi, D. Gilliland, F. Pianella, and J. M. Riego Sintes. 2015. Techniques and protocols for dispersing nanoparticle powders in aqueous media-is there a rationale for harmonization? Journal of Toxicology and Environmental Health, Part B 18:299–326. doi:10.1080/10937404.2015.1074969.
  • Helali, A. M., F. M. Iti, and I. N. Mohamed. 2013. Cathepsin K inhibitors: A novel target but promising approach in the treatment of osteoporosis. Current Drug Targets 14:1591–600. doi:10.2174/13894501113149990202.
  • Hendren, C. O., M. Lowry, K. D. Grieger, E. S. Money, J. M. Johnston, M. R. Wiesner, and S. M. Beaulieu. 2013. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Environmental Science & Technology 47 (3):1190–205. doi:10.1021/es302749u.
  • Herrmann, I. K., B. Beck-Schimmer, C. M. Schumacher, S. Gschwind, A. Kaech, U. Ziegler, P. A. Clavien, D. Gunther, W. J. Stark, and A. A. Schlegel. 2016. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios. Nanomedicine 11:783–96. doi:10.2217/nnm.16.22.
  • Honey, K., K. Benlagha, C. Beers, K. Forbush, L. Teyton, M. J. Kleijmeer, A. Y. Rudensky, and A. Bendelac. 2002. Thymocyte expression of cathepsin L is essential for NKT cell development. Nature Immunology 3:1069–74. doi:10.1038/ni844.
  • Hornos Carneiro, M. F., and F. Barbosa. 2016. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. Journal of Toxicology and Environmental Health, Part B 19:129–48. doi:10.1080/10937404.2016.1168762.
  • Hornung, V., F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L. Rock, K. A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9:847–56. doi:10.1038/ni.1631.
  • Hsieh, C. S., P. deRoos, K. Honey, C. Beers, and A. Y. Rudensky. 2002. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. The Journal of Immunology 168:2618–25. doi:10.4049/jimmunol.168.6.2618.
  • Huang, X., A. Vaag, E. Carlsson, M. Hansson, B. Ahrén, and L. Groop. 2003. Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes. Diabetes 52:2411–18. doi:10.2337/diabetes.52.9.2411.
  • Hughes, C. S., L. M. Colhoun, B. K. Bains, J. D. Kilgour, R. E. Burden, J. F. Burrows, E. C. Lavelle, B. F. Gilmore, and C. J. Scott. 2016. Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages. Particle and Fibre Toxicology 13:19–32. doi:10.1186/s12989-016-0129-5.
  • Hullin-Matsuda, F., T. Taguchi, P. Greimel, and T. Kobayashi. 2014. Lipid compartmentalization in the endosome system. Seminars in Cell & Developmental Biology 31:48–56. doi:10.1016/j.semcdb.2014.04.010.
  • Jacobson, L. S., H. Lima, M. F. Goldberg, V. Gocheva, V. Tsiperson, F. S. Sutterwala, J. A. Joyce, B. V. Gapp, V. A. Blomen, K. Chandran, T. R. Brummelkamp, F. Diaz-Griffero, and J. Brojatsch. 2013. Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. Journal of Biological Chemistry 288:7481–91. doi:10.1074/jbc.M112.400655.
  • Jessop, F., R. F. Hamilton Jr, J. F. Rhoderick, P. Fletcher, and A. Holian. 2017. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicology and Applied Pharmacology 318:58–68. doi:10.1016/j.taap.2017.01.012.
  • Jimeno-Romero, A., E. Bilbao, U. Izagirre, M. P. Cajaraville, I. Marigómez, and M. Soto. 2017. Digestive cell lysosomes as main targets for Ag accumulation and toxicity in marine mussels, Mytilus galloprovincialis, exposed to maltose-stabilised Ag nanoparticles of different sizes. Nanotoxicology [Epub Ahead of Print, 2017]. doi:10.1080/17435390.2017.1279358.
  • Kermanizadeh, A., D. Balharry, H. Wallin, S. Loft, and P. Møller. 2015. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Critical Reviews in Toxicology 45:837–72. doi:10.3109/10408444.2015.1058747.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A. G. Lenz, T. Fernandes, R. P. Schins, F. R. Cassee, H. Wallin, W. Kreyling, T. Stoeger, S. Loft, P. Møller, L. Tran, and V. Stone. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health–ENPRA project–the highlights, limitations, and current and future challenges. Journal of Toxicology and Environmental Health, Part B 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Khan, F. R., S. K. Misra, J. García-Alonso, B. D. Smith, S. Strekopytov, P. S. Rainbow, S. N. Luoma, and E. Valsami-Jones. 2012. Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver. Environmental Science & Technology 46:7621–28. doi:10.1021/es301253s.
  • Kharazian, B., N. L. Hadipour, and M. R. Ejtehadi. 2016. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. The International Journal of Biochemistry & Cell Biology 75:162–74. doi:10.1016/j.biocel.2016.02.008.
  • Khlebtsov, N., and L. Dykman. 2011. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews 40:1647–71. doi:10.1039/C0CS00018C.
  • Kitamoto, S., G. K. Sukhova, J. Sun, M. Yang, P. Libby, V. Love, P. Duramad, C. Sun, Y. Zhang, X. Yang, C. Peters, and G. P. Shi. 2007. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115:2065–75. doi:10.1161/CIRCULATIONAHA.107.688523.
  • Kono, H., G. M. Orlowski, Z. Patel, and K. L. Rock. 2012. The IL-1-dependent sterile inflammatory response has a substantial caspase-1-independent component that requires cathepsin C. The Journal of Immunology 189:3734–40. doi:10.4049/jimmunol.1200136.
  • Kononenko, V., M. Narat, and D. Drobne. 2015. Nanoparticle interaction with the immune system. Arh Hiq Rada Toksikol 66:97–108.
  • Korhonen, E., S. Rönkkö, S. Hillebrand, J. Riikonen, W. Xu, K. Järvinen, V.-P. Lehto, and A. Kauppinen. 2016. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 100:1–8. doi:10.1016/j.ejpb.2015.11.020.
  • Kos, J., A. Mitrović, and B. Mirković. 2014. The current stage of cathepsin B inhibitors as potential anticancer agents. Future Medicinal Chemistry 6:1355–71. doi:10.4155/fmc.14.73.
  • Kundranda, M. N., M. Henderson, K. J. Carter, L. Gorden, A. Binhazim, S. Ray, T. Baptiste, M. Shokrani, M. L. Leite-Browning, W. Jahnen-Dechent, L. M. Matrisian, and J. Ochieng. 2005. The serum glycoprotein fetuin-A promotes Lewis lung carcinoma tumorigenesis via adhesive-dependent and adhesive-independent mechanisms. Cancer Research 65:499–506.
  • Kundu, J. K., and Y. J. Surh. 2008. Inflammation: Gearing the journey to cancer. Mutation Research/Reviews in Mutation Research 659:15–30. doi:10.1016/j.mrrev.2008.03.002.
  • Lafuente, J. V., A. Sharma, R. Patnaik, D. F. Muresanu, and H. S. Sharma. 2012. Diabetes exacerbates nanoparticles induced brain pathology. CNS & Neurological Disorders - Drug Targets 11:26–39. doi:10.2174/187152712799960808.
  • Lai, D. Y. 2015. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials. Food and Chemical Toxicology 85:120–26. doi:10.1016/j.fct.2015.06.008.
  • Laine, D. I., and J. Busch-Petersen. 2010. Inhibitors of cathepsin C (dipeptidyl peptidase I). Expert Opinion on Therapeutic Patents 20:497–506. doi:10.1517/13543771003657172.
  • Lecaille, F., G. Lalmanach, and P. M. Andrault. 2016. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 122:151–68. doi:10.1016/j.biochi.2015.08.014.
  • Lemen, R. A. 2016. Mesothelioma from asbestos exposures: Epidemiological patterns and impact in the United States. Journal of Toxicology and Environmental Health, Part B 19:250–65. doi:10.1080/10937404.2016.1195323.
  • Li, L., T. Liu, C. Fu, L. Tan, X. Meng, and H. Liu. 2015. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine: Nanotechnology, Biology and Medicine 11:1915–24. doi:10.1016/j.nano.2015.07.004.
  • Liu, J., L. Yang, H. Tian, and Q. Ma. 2016. Cathepsin D is involved in the oxygen and glucose deprivation/reperfusion-induced apoptosis of astrocytes. International Journal of Molecular Medicine 38:1257–63.
  • Liu, Y., Y. Zhao, B. Sun, and C. Chen. 2013. Understanding the toxicity of carbon nanotubes. Accounts of Chemical Research 46:702–13. doi:10.1021/ar300028m.
  • Löser, R., and J. Pietzsch. 2015. Cysteine cathepsins: Their role in tumor progression and recent trends in the development of imaging probes. Frontiers in Chemistry 3:37. doi:10.3389/fchem.2015.00037.
  • Lucarelli, M., A. M. Gatti, G. Savarino, P. Quattroni, L. Martinelli, E. Monari, and D. Boraschi. 2004. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. European Cytokine Network 15:339–46.
  • Luo, Y. H., S. B. Wu, Y. H. Wei, Y. C. Chen, M. H. Tsai, C. C. Ho, S. Y. Lin, C. S. Yang, and P. Lin. 2013. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chemical Research in Toxicology 26:662–73. doi:10.1021/tx300455k.
  • Lutgens, E., S. P. Lutgens, B. C. Faber, S. Heeneman, M. M. Gijbels, M. P. De Winther, P. Frederik, I. Van Der Made, A. Daugherty, A. M. Sijbers, A. Fisher, C. J. Long, P. Saftig, D. Black, M. J. Daemen, and K. B. Cleutjens. 2006. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113:98–107. doi:10.1161/CIRCULATIONAHA.105.561449.
  • Lv, B. J., J. S. Lindholt, X. Cheng, J. Wang, and G. P. Shi. 2012. Plasma cathepsin S and cystatin C levels and risk of abdominal aortic aneurysm: A randomized population-based study. Plos ONE 7:e41813. doi:10.1371/journal.pone.0041813.
  • Ma, Z., J. Bai, and X. Jiang. 2015. Monitoring of the enzymatic degradation of protein corona and evaluating the accompanying cytotoxicity of nanoparticles. ACS Applied Materials & Interfaces 7:17614–22. doi:10.1021/acsami.5b05744.
  • Maehr, R., J. D. Mintern, A. E. Herman, A. M. Lennon-Duménil, D. Mathis, C. Benoist, and H. L. Ploegh. 2005. Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. Journal of Clinical Investigation 115:2934–43. doi:10.1172/JCI25485.
  • Mahon, E., A. Salvati, F. Baldelli Bombelli, I. Lynch, and K. A. Dawson. 2012. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. Journal of Controlled Release 161:164–74. doi:10.1016/j.jconrel.2012.04.009.
  • Maisch, B., A. Richter, A. Sandmöller, I. Portig, and S. Pankuweit. 2005. Inflammatorische dilatative Kardiomyopathie (DCMI). Herz 30:535–44. doi:10.1007/s00059-005-2730-5.
  • McConnell, R. M., A. W. Green, C. J. Trana, M. S. McConnell, J. F. Lindley, K. Sayyar, W. E. Godwin, and S. E. Hatfield. 2006. New cathepsin d inhibitors with hydroxyethylamine isosteres: Preparation and characterization. Medicinal Chemistry 2:27–38. doi:10.2174/157340606775197705.
  • Meng, J., X. D. Yang, L. Jia, X. J. Liang, and C. Wang. 2012. Impacts of nanoparticles on cardiovascular diseases: Modulating metabolism and function of endothelial cells. Current Drug Metabolism 13:1123–29. doi:10.2174/138920012802850056.
  • Mercer, R. R., J. F. Scabilloni, A. F. Hubbs, L. Wang, L. A. Battelli, W. McKinney, V. Castranova, and D. W. Porter. 2013. Extrapulmonary transport of MWCNT following inhalation exposure. Particle and Fibre Toxicology 10:38. doi:10.1186/1743-8977-10-38.
  • Morimoto, Y., M. Horie, N. Kobayashi, N. Shinohara, and M. Shimada. 2013. Inhalation toxicity assessment of carbon-based nanoparticles. Accounts of Chemical Research 46:770–81. doi:10.1021/ar200311b.
  • Mukherjee, S. P., and H. J. Byrne. 2013. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: Experimental observation and numerical simulation. Nanomedicine: Nanotechnology, Biology and Medicine 9:202–11. doi:10.1016/j.nano.2012.05.002.
  • Müller, K. H., J. Kulkarni, M. Motskin, A. Goode, P. Winship, J. N. Skepper, M. P. Ryan, and A. E. Porter. 2010. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 4:6767–79. doi:10.1021/nn101192z.
  • Nakagawa, T. Y., W. H. Brissette, P. D. Lira, R. J. Griffiths, N. Petrushova, J. Stock, J. D. McNeish, S. E. Eastman, E. D. Howard, S. R. Clarke, E. F. Rosloniec, E. A. Elliott, and A. Y. Rudensky. 1999. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–17. doi:10.1016/S1074-7613(00)80021-7.
  • Neibert, K. D., and D. Maysinger. 2012. Mechanisms of cellular adaptation to quantum dots–the role of glutathione and transcription factor EB. Nanotoxicology 6:249–62. doi:10.3109/17435390.2011.572195.
  • Nemmar, A., J. A. Holme, I. Rosas, P. E. Schwarze, and E. Alfaro-Moreno. 2013. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. Biomedical Research International 2013:279371. doi:10.1155/2013/279371.
  • Novinec, M., B. Lenarčič, and B. Turk. 2014. Cysteine cathepsin activity regulation by glycosaminoglycans. Biomedical Research International 2014:1–9. doi:10.1155/2014/309718.
  • Oberdörster, G., V. Castranova, B. Asgharian, and P. Sayre. 2015. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodology and dosimetry. Journal of Toxicology and Environmental Health, Part B 18:121–212. doi:10.1080/10937404.2015.1051611.
  • Oberdörster, G., V. Stone, and K. Donaldson. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1:2–25. doi:10.1080/17435390701314761.
  • Ochieng, J., and G. Chaudhuri. 2010. Cystatin superfamily. Journal of Health Care for the Poor and Underserved 21:51–70. doi:10.1353/hpu.0.0257.
  • Palomäki, J., E. Välimäki, J. Sund, M. Vippola, P. A. Clausen, K. A. Jensen, K. Savolainen, S. Matikainen, and H. Alenius. 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–70. doi:10.1021/nn200595c.
  • Panwar, P., D. Xin, V. Sharma, G. Lamour, M. Castor, H. Li, and D. Brömme. 2013. Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. Journal of Biological Chemistry 288:5940–50. doi:10.1074/jbc.M112.419689.
  • Payne, C. D., M. A. Deeg, M. Chan, L. H. Tan, E. S. LaBell, T. Shen, and D. J. DeBrota. 2014. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects. British Journal of Clinical Pharmacology 78:1334–42. doi:10.1111/bcp.2014.78.issue-6.
  • Peters, A., R. Rückerl, and J. Cyrys. 2011. Lessons from air pollution epidemiology for studies of engineered nanomaterials. Journal of Occupational and Environmental Medicine 53:S8–S13. doi:10.1097/JOM.0b013e31821ad5c0.
  • Petzoldt, C., O. Bley, S. J. Byard, D. Andert, B. Baumgartner, N. Nagel, C. Tappertzhofen, and M. Feth. 2014. An example of how to handle amorphous fractions in API during early pharmaceutical development: SAR114137–a successful approach. European Journal of Pharmaceutics and Biopharmaceutics 86:337–50. doi:10.1016/j.ejpb.2013.09.015.
  • Peynshaert, K., B. B. Manshian, F. Joris, K. Braeckmans, S. C. De Smedt, J. Demeester, and S. J. Soenen. 2014. Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical Reviews 114:7581–609. doi:10.1021/cr400372p.
  • Platt, M. O., and W. A. Shockey. 2016. Endothelial cells and cathepsins: Biochemical and biomechanical regulation. Biochimie 122:314–23. doi:10.1016/j.biochi.2015.10.010.
  • Qi, X., S. M. Man, R. K. Malireddi, R. Karki, C. Lupfer, P. Gurung, G. Neale, C. S. Guy, M. Lamkanfi, and T. D. Kanneganti. 2016. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. The Journal of Experimental Medicine 213:2081–97. doi:10.1084/jem.20151938.
  • Reiser, J., B. Adair, and T. Reinheckel. 2010. Specialized roles for cysteine cathepsins in health and disease. The Journal of Clinical Investigation 120:3421–31. doi:10.1172/JCI42918.
  • Repnik, U., M. Hafner Česen, and B. Turk. 2014. Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion 19:49–57. doi:10.1016/j.mito.2014.06.006.
  • Repnik, U., A. E. Starr, C. M. Overall, and B. Turk. 2015. Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. The Journal of Biological Chemistry 290:13800–11. doi:10.1074/jbc.M115.638395.
  • Sadegh-Nasseri, S., and A. Kim. 2015. Exogenous antigens bind MHC class II first, and are processed by cathepsins later. Molecular Immunology 68:81–84. doi:10.1016/j.molimm.2015.07.018.
  • Saftig, P., and J. Klumperman. 2009. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nature Reviews. Molecular Cell Biology 10:623–35. doi:10.1038/nrm2745.
  • Sage, J., F. Mallèvre, F. Barbarin-Costes, S. A. Samsonov, J. P. Gehrcke, M. T. Pisabarro, E. Perrier, S. Schnebert, A. Roget, T. Livache, C. Nizard, G. Lalmanach, and F. Lecaille. 2013. Binding of chondroitin 4-sulfate to cathepsin S regulates its enzymatic activity. Biochemistry 52:6487–98. doi:10.1021/bi400925g.
  • Sargent, L. M., D. W. Porter, L. M. Staska, A. F. Hubbs, D. T. Lowry, L. Battelli, K. J. Siegrist, M. L. Kashon, R. R. Mercer, A. K. Bauer, B. T. Chen, J. L. Salisbury, D. Frazer, W. McKinney, M. Andrew, S. Tsuruoka, M. Endo, K. L. Fluharty, V. Castranova, and S. H. Reynolds. 2014. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Particle and Fibre Toxicology 11:3. doi:10.1186/1743-8977-11-3.
  • Schramm, F., M. Lange, P. Hoppmann, and A. Heutelbeck. 2016. Cytotoxicity of carbon nanohorns in different human cells of the respiratory system. Journal of Toxicology and Environmental Health, Part A 79:1085–93. doi:10.1080/15287394.2016.1219594.
  • Schulze, H., T. Kolter, and K. Sandhoff. 2009. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research 1793:674–83. doi:10.1016/j.bbamcr.2008.09.020.
  • Schulze, H., and K. Sandhoff. 2011. Lysosomal lipid storage diseases. Cold Spring Harbor Perspectives in Biology 3:a004804–a004804. doi:10.1101/cshperspect.a004804.
  • Schurigt, U., K. M. Hummel, P. K. Petrow, M. Gajda, R. Stöckigt, P. Middel, J. Zwerina, T. Janik, R. Bernhardt, S. Schüler, D. Scharnweber, F. Beckmann, P. Saftig, G. Kollias, G. Schett, B. Wiederanders, and R. Bräuer. 2008. Cathepsin K deficiency partially inhibits, but does not prevent, bone destruction in human tumor necrosis factor-transgenic mice. Arthritis and Rheumatism 58:422–34. doi:10.1002/(ISSN)1529-0131.
  • Sethi, G., M. K. Shanmugam, L. Ramachandran, A. P. Kumar, and V. Tergaonkar. 2012. Multifaceted link between cancer and inflammation. Bioscience Reports 32:1–15. doi:10.1042/BSR20100136.
  • Settembre, C., A. Fraldi, L. Jahreiss, C. Spampanato, C. Venturi, D. Medina, R. De Pablo, C. Tacchetti, D. C. Rubinsztein, and A. Ballabio. 2008. A block of autophagy in lysosomal storage disorders. Human Molecular Genetics 17:119–29. doi:10.1093/hmg/ddm289.
  • Sevenich, L., U. Schurigt, K. Sachse, M. Gajda, F. Werner, S. Müller, O. Vasiljeva, A. Schwinde, N. Klemm, J. Deussing, C. Peters, and T. Reinheckel. 2010. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proceedings of the National Academy of Sciences 107:2497–502. doi:10.1073/pnas.0907240107.
  • Shvedova, A. A., E. Kisin, A. R. Murray, V. J. Johnson, O. Gorelik, S. Arepalli, A. F. Hubbs, R. R. Mercer, P. Keohavong, N. Sussman, J. Jin, J. Yin, S. Stone, B. T. Chen, G. Deye, A. Maynard, V. Castranova, P. A. Baron, and V. E. Kagan. 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. AJP: Lung Cellular and Molecular Physiology 295:L552–L565. doi:10.1152/ajplung.90287.2008.
  • Simkó, M., D. Nosske, and W. G. Kreyling. 2014. Metrics, dose, and dose concept: The need for a proper dose concept in the risk assessment of nanoparticles. International Journal of Environmental Research and Public Health 11:4026–48. doi:10.3390/ijerph110404026.
  • Snyder-Talkington, B., C. Dong, D. W. Porter, B. Ducatman, M. G. Wolfarth, M. Andrew, L. Battelli, R. Raese, V. Castranova, N. L. Guo, and Y. Qian. 2016. Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study. Journal of Toxicology and Environmental Health, Part A 79:352–66. doi:10.1080/15287394.2016.1159635.
  • Song, W., L. Popp, J. Yang, A. Kuma, V. S. Ganoli, and L. Segatori. 2015. The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. Journal of Nanobiotechnology 13:87. doi:10.1186/s12951-015-0149-6.
  • Stan, M. S., C. Sima, L. O. Cinteza, and A. Dinischiotu. 2015. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. The FEBS Journal 282:2914–29. doi:10.1111/febs.13330.
  • Stephenson, E., K. Savvatis, S. A. Mohiddin, and F. M. Marelli-Berg. 2016. T cell immunity in myocardial inflammation: Pathogenic role and therapeutic manipulation. British Journal of Pharmacology. doi:10.1111/bph.13613.
  • Stern, S. T., P. P. Adiseshaiah, and R. M. Crist. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle and Fibre Toxicology 9:20. doi:10.1186/1743-8977-9-20.
  • Stoeckle, C., P. Quecke, T. Rückrich, T. Burster, M. Reich, E. Weber, H. Kalbacher, C. Driessen, A. Melms, and E. Tolosa. 2012. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. Journal of Autoimmunity 38:332–43. doi:10.1016/j.jaut.2012.02.003.
  • Sukhova, G. K., Y. Zhang, J. H. Pan, Y. Wada, T. Yamamoto, M. Naito, T. Kodama, S. Tsimikas, J. L. Witztum, M. L. Lu, Y. Sakara, M. T. Chin, P. Libby, and G. P. Shi. 2003. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. The Journal of Clinical Investigation 111:897–906. doi:10.1172/JCI200314915.
  • Suzui, M., M. Futakuchi, K. Fukamachi, T. Numano, M. Abdelgied, S. Takahashi, M. Ohnishi, T. Omori, S. Tsuruoka, A. Hirose, J. Kanno, Y. Sakamoto, D. B. Alexander, W. T. Alexander, X. Jiegou, and H. Tsuda. 2016. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Science 107:924–35. doi:10.1111/cas.12954.
  • Suzuki, H., T. Osawa, Y. Fujioka, and N. N. Noda. 2017. Structural biology of the core autophagy machinery. Current Opinion in Structural Biology 43:10–17. doi:10.1016/j.sbi.2016.09.010.
  • Svelander, L., H. Erlandsson-Harris, L. Astner, U. Grabowska, L. Klareskog, E. Lindstrom, and E. Hewitt. 2009. Inhibition of cathepsin K reduces bone erosion, cartilage degradation and inflammation evoked by collagen-induced arthritis in mice. European Journal of Pharmacology 613:155–62. doi:10.1016/j.ejphar.2009.03.074.
  • Tahara, Y., M. Nakamura, M. Yang, M. Zhang, S. Iijima, and M. Yudasaka. 2012. Lysosomal membrane destabilization induced by high accumulation of single-walled carbon nanohorns in murine macrophage RAW 264.7. Biomaterials 33:2762–69. doi:10.1016/j.biomaterials.2011.12.023.
  • Takagi, A., A. Hirose, M. Futakuchi, H. Tsuda, and J. Kanno. 2012. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Science 103:1440–44. doi:10.1111/j.1349-7006.2012.02318.x.
  • Tanaka, T., B. Godin, R. Bhavane, R. Nieves-Alicea, J. Gu, X. Liu, C. Chiappini, J. R. Fakhoury, S. Amra, A. Ewing, Q. Li, I. J. Fidler, and M. Ferrari. 2010. In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. International Journal of Pharmaceutics 402:190–97. doi:10.1016/j.ijpharm.2010.09.015.
  • Theocharis, A. D., C. Gialeli, P. Bouris, E. Giannopoulou, S. S. Skandalis, A. J. Aletras, R. V. Lozzo, and N. K. Karamanos. 2014. Cell-matrix interactions: Focus on proteoglycan-proteinase interplays and pharmacological targeting in cancer. The FEBS Journal 281:5023–42. doi:10.1111/febs.12927.
  • Theocharis, A. D., S. S. Skandalis, G. N. Tzanakakis, and N. K. Karamanos. 2010. Proteoglycans in health and disease: Novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS Journal 277:3904–23. doi:10.1111/j.1742-4658.2010.07800.x.
  • Troester, M., H. J. Brauch, and T. Hofmann. 2016. Vulnerability of drinking water supplies to engineered nanoparticles. Water Research 96:255–79. doi:10.1016/j.watres.2016.03.038.
  • Tummalapalli, P., D. Spomar, C. S. Gondi, W. C. Olivero, M. Gujrati, D. H. Dinh, and J. S. Rao. 2007. RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. International Journal of Oncology 31:1039–50.
  • Turk, B., J. G. Bieth, I. Björk, I. Dolenc, D. Turk, N. Cimerman, J. Kos, A. Colic, V. Stoka, and V. Turk. 1995. Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biological Chemistry Hoppe-Seyler 376:225–30. doi:10.1515/bchm3.1995.376.4.225.
  • Turk, V., V. Stoka, O. Vasiljeva, M. Renko, T. Sun, B. Turk, and D. Turk. 2012. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics 1824:68–88. doi:10.1016/j.bbapap.2011.10.002.
  • Vasiljeva, O., A. Papazoglou, A. Krüger, H. Brodoefel, M. Korovin, J. Deussing, N. Augustin, B. S. Nielsen, K. Almholt, M. Bogyo, C. Peters, and T. Reinheckel. 2006. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Research 66:5242–50. doi:10.1158/0008-5472.CAN-05-4463.
  • Wang, H., K. T. Ho, K. G. Scheckel, F. Wu, M. G. Cantwell, D. R. Katz, D. B. Horowitz, W. S. Boothman, and R. M. Burgess. 2014. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms. Environmental Science & Technology 48:13711–17. doi:10.1021/es502976y.
  • Wang, Y., G. Kaur, A. Zysk, V. Liapis, S. Hay, A. Santos, D. Losic, and A. Evdokiou. 2015. Systematic in vitro nanotoxicity study on anodic alumina nanotubes with engineered aspect ratio: Understanding nanotoxicity by a nanomaterial model. Biomaterials 46:117–30. doi:10.1016/j.biomaterials.2014.12.008.
  • Warheit, D. B., and E. M. Donner. 2015. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food and Chemical Toxicology 85:138–47. doi:10.1016/j.fct.2015.07.001.
  • Wilkinson, R. D., R. Williams, C. J. Scott, and R. E. Burden. 2015. Cathepsin S: Therapeutic, diagnostic, and prognostic potential. Biological Chemistry 396:867–82. doi:10.1515/hsz-2015-0114.
  • Xia, T., R. F. Hamilton, J. C. Bonner, E. D. Crandall, A. Elder, F. Fazlollahi, T. A. Girtsman, K. Kim, S. Mitra, S. A. Ntim, G. Orr, M. Tagmount, A. J. Taylor, D. Telesca, A. Tolic, C. D. Vulpe, A. J. Walker, X. Wang, F. A. Witzmann, N. Wu, Y. Xie, J. I. Zink, A. Nel, and A. Holian. 2013. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives 121:683–90. doi:10.1289/ehp.1306561.
  • Xu, J., H. Wang, K. Ding, X. Lu, T. Li, J. Wang, C. Wang, and J. Wang. 2013. Inhibition of cathepsin S produces neuroprotective effects after traumatic brain injury in mice. Mediators of Inflammation 2013:1–11. doi:10.1155/2013/187873.
  • Xu, Y., J. Wang, X. Song, R. Wei, F. He, G. Peng, and B. Luo. 2016. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Research Bulletin 120:97–105. doi:10.1016/j.brainresbull.2015.11.007.
  • Xu, Y., L. Wang, R. Bai, T. Zhang, and C. Chen. 2015. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 7:16100–09. doi:10.1039/C5NR04200C.
  • Yan, R., M. J. Bienkowski, M. E. Shuck., H. Miao., M. C. Tory., A. M Pauley., J. R. Brashier., N. C. Stratman., W. R. Mathews., A. E. Buhl., D. B. Carter., A. G. Tomasselli., L. A. Parodi, R. L. Heinrikson, and M. E. Gurney. 1999. Membrane-anchored aspartyl protease with Alzheimer's disease betasecretase activity. Nature. Dec 2;402(6761):533–7.
  • Yan, S. Q., R. Xing, Y. F. Zhou, K. L. Li, Y. Y. Su, J. F. Qiu, Y. H. Zhang, K. Q. Zhang, Y. He, X. P. Lu, and S. Q. Xu. 2016. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism. Scientific Reports 6:34182. doi:10.1038/srep34182.
  • Yang, L. Y., J. L. Gao, T. Gao, P. Dong, L. Ma, F. L. Jiang, and Y. Liu. 2016a. Toxicity of polyhydroxylated fullerene to mitochondria. Journal of Hazardous Materials 301:119–26. doi:10.1016/j.jhazmat.2015.08.046.
  • Yang, L., X. Zhong, Q. Li, X. Zhang, Y. Wang, K. Yang, and L. W. Zhang. 2016b. Potentiation of drug-induced phospholipidosis in vitro through PEGlyated graphene oxide as the nanocarrier. Toxicogical Sciences. [Epub Ahead of Print, 2016b] doi:10.1093/toxsci/kfw233.
  • Yang, M., J. Sun, T. Zhang, J. Liu, J. Zhang, M. A. Shi, F. Darakhshan, M. Guerre-Millo, K. Clement, B. D. Gelb, G. Dolgnov, and G. P. Shi. 2008. Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arteriosclerosis, Thrombosis, and Vascular Biology 28:2202–08. doi:10.1161/ATVBAHA.108.172320.
  • Yang, M., M. Zhang, Y. Tahara, S. Chechetka, E. Miyako, S. Iijima, and M. Yudasaka. 2014. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxicology and Applied Pharmacology 280:117–26. doi:10.1016/j.taap.2014.07.022.
  • Zhang, L., H. Wang, and J. Xu. 2015b. Cathepsin S as a cancer target. Neoplasma 62:16–26. doi:10.4149/neo_2015_003.
  • Zhang, X. Q., O. Even-Or, X. Xu, M. Van Rosmalen, L. Lim, S. Gadde, O. C. Farokhzad, and E. A. Fisher. 2015a. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis. Advanced Healthcare Materials 4:228–36. doi:10.1002/adhm.v4.2.
  • Zhang, Y. F., Y. F. Zheng, and L. Quin. 2011. A comprehensive biological evaluation of ceramic nanoparticles as wear debris. Nanomedicine 7:975–82. doi:10.1016/j.nano.2011.04.005.
  • Zhao, G., Y. Li, L. Cui, X. Li, Z. Jin, X. Han, E. Fang, Y. Gao, D. Zhou, H. Jiang, X. Jin, G. Piao, X. Li, G. Yang, J. Jin, E. Zhu, M. Piao, L. Piao, K. Yuan, Y. Lei, D. Ding, C. Jin, Y. Nan, and X. Cheng. 2015. Increased circulating cathepsin K in patients with chronic heart failure. Plos One 10:e0136093. doi:10.1371/journal.pone.0136093.
  • Zhao, J., and V. Castranova. 2011. Toxicology of nanomaterials used in nanomedicine. Journal of Toxicology and Environmental Health, Part B 14:593–632. doi:10.1080/10937404.2011.615113.
  • Zhou, W., Y. Miao, Y. Zhang, L. Liu, J. Lin, J. Y. Yang, Y. Xie, and L. Wen. 2013. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals. Nanotechnology 24:165102. doi:10.1088/0957-4484/24/16/165102.
  • Zhu, W., A. Von Dem Bussche, X. Yi, Y. Qiu, Z. Wang, P. Weston, R. H. Hurt, A. B. Kane, and H. Gao. 2016. Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proceedings of the National Academy of Sciences 113:12374–79. doi:10.1073/pnas.1605030113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.