612
Views
21
CrossRef citations to date
0
Altmetric
Review

Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the in vitro studies

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Acloque, H., M. S. Adams, K. Fishwick, M. Bronner-Fraser, and M. A. Nieto. 2009. Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease. J. Clin. Invest. 119 (6):1438–49. doi:10.1172/JCI38019.
  • Agarwal, S. K. 2014. Integrins and cadherins as therapeutic targets in fibrosis. Front. Pharmacol. 5. doi:10.3389/fphar.2014.00131.
  • Aksorn, N., and P. Chanvorachote. 2019. Integrin as a molecular target for anti-cancer approaches in lung cancer. Anticancer Res. 39 (2):541–48. doi:10.21873/anticanres.13146.
  • Ancel, J., P. Birembaut, M. Dewolf, A. Durlach, B. Nawrocki-Raby, V. Dalstein, G. Delepine, S. Blacher, G. Deslée, C. Gilles, et al. 2019. Programmed death–ligand 1 and vimentin: A tandem marker as prognostic factor in NSCLC. Cancers 11 (10):1411. doi:10.3390/cancers11101411.
  • Andersen, Z. J., K. Bønnelykke, M. Hvidberg, S. S. Jensen, M. Ketzel, S. Loft, M. Sørensen, A. Tjønneland, K. Overvad, and O. Raaschou-Nielsen. 2012. Long-term exposure to air pollution and asthma hospitalisations in older adults: A cohort study. Thorax 67 (1):6–11. doi:10.1136/thoraxjnl-2011-200711.
  • Anenberg, S. C., D. K. Henze, V. Tinney, P. L. Kinney, W. MacNee, N. Fann, C. S. Malley, H. Roman, L. Lamsal, B. Duncan, et al. 2018. Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits. Environ. Health Perspect. 126 (10):107004. doi:10.1289/EHP3766.
  • Anttila, S., H. Raunio, and J. Hakkola. 2011. Cytochrome P450–mediated pulmonary metabolism of carcinogens. Am. J. Respirat. Cell Mol. Biol. 44 (5):583–90. doi:10.1165/rcmb.2010-0189RT.
  • Arooj, M., I. Ali, H. K. Kang, J. W. Hyun, and Y.-S. Koh. 2020. Inhibitory effect of particulate matter on toll-like receptor 9 stimulated dendritic cells by downregulating mitogen-activated protein kinase and NF-κB pathway. J. Toxicol. Environ. Health Part A 83 (9):341–50. doi:10.1080/15287394.2020.1756018.
  • Asgharian, B., O. T. Price, and W. Hofmann. 2006. Prediction of particle deposition in the human lung using realistic models of lung ventilation. J. Aerosol. Sci. 37 (10):1209–21. doi:10.1016/j.jaerosci.2006.01.002.
  • Asgharian, B., W. Hofmann, and R. Bergmann. 2001. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34 (4):332–39. doi:10.1080/02786820119122.
  • Bachelder, R. E., S.-O. Yoon, C. Franci, A. G. de Herreros, and A. M. Mercurio. 2005. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription implications for the epithelial–mesenchymal transition. J. Cell Biol. 168 (1):29–33. doi:10.1083/jcb.200409067.
  • Badran, G., F. Ledoux, A. Verdin, I. Abbas, M. Roumie, P. Genevray, Y. Landkocz, J.-M. Lo Guidice, G. Garçon, and D. Courcot. 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243:125440. doi:10.1016/j.chemosphere.2019.125440.
  • Bakin, A. V., A. K. Tomlinson, N. A. Bhowmick, H. L. Moses, and C. L. Arteaga. 2000. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J. Bio. Chem. 275 (47):36803–10. doi:10.1074/jbc.M005912200.
  • Balásházy, I., W. Hofmann, and T. Heistracher. 2003. Local particle deposition patterns may play a key role in the development of lung cancer. J. Appl. Physiol. 94 (5):1719–25. doi:10.1152/japplphysiol.00527.2002.
  • Barker, T. H., M. M. Dysart, A. C. Brown, A. M. Douglas, V. F. Fiore, and A. G. Russell, HEI Health Review Committee, 2014. Synergistic effects of particulate matter and substrate stiffness on epithelial-to-mesenchymal transition. Res. Rep. Health Eff. Inst. 3–41.
  • Bartis, D., N. Mise, R. Y. Mahida, O. Eickelberg, and D. R. Thickett. 2014. Epithelial–mesenchymal transition in lung development and disease: Does it exist and is it important? Thorax 69 (8):760–65. doi:10.1136/thoraxjnl-2013-204608.
  • Belgacemi, R., E. Luczka, J. Ancel, Z. Diabasana, J.-M. Perotin, A. Germain, N. Lalun, P. Birembaut, X. Dubernard, J.-C. Mérol, et al. 2020. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 51:102572. doi:10.1016/j.ebiom.2019.11.033.
  • Bontinck, A., T. Maes, and G. Joos. 2020. Asthma and air pollution: Recent insights in pathogenesis and clinical implications. Curr. Opin. Pulm. Med. 26 (1):10–19. doi:10.1097/MCP.0000000000000644.
  • Borgie, M., Z. Dagher, F. Ledoux, A. Verdin, F. Cazier, P. Martin, A. Hachimi, P. Shirali, H. Greige-Gerges, and D. Courcot. 2015. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. Environ. Pollut. 205:250–60. doi:10.1016/j.envpol.2015.05.027.
  • Brabletz, T., R. Kalluri, M. A. Nieto, and R. A. Weinberg. 2018. EMT in cancer. Nat. Rev. Cancer 18 (2):128–34. doi:10.1038/nrc.2017.118.
  • Brandsma, C.-A., M. V. Den Berge, T.-L. Hackett, G. Brusselle, and W. Timens. 2020. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine. J. Pathol. 250 (5):624–35. doi:10.1002/path.5364.
  • Briscoe, J., and P. P. Thérond. 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–29. doi:10.1038/nrm3598.
  • Brown, A. C., V. F. Fiore, T. A. Sulchek, and T. H. Barker. 2013. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J. Pathol. 229 (1):25–35. doi:10.1002/path.4114.
  • Castañeda, A. R., K. J. Bein, S. Smiley-Jewell, and K. E. Pinkerton. 2017. Fine particulate matter (PM 2.5) enhances allergic sensitization in BALB/c mice. J. Toxicol. Environ. Health A 80 (4):197–207. doi:10.1080/15287394.2016.1222920.
  • Chen, C.-C., P.-S. Chen, and C.-Y. Yang. 2019. Relationship between fine particulate air pollution exposure and human adult life expectancy in Taiwan. J. Toxicol. Environ. Health Part A 82 (14):826–32. doi:10.1080/15287394.2019.1658386.
  • Chen, G., Y. Zhang, W. Zhang, S. Li, G. Williams, G. B. Marks, B. Jalaludin, M. J. Abramson, F. Luo, D. Yang, et al. 2017a. Attributable risks of emergency hospital visits due to air pollutants in China: A multi-city study. Environ. Pollut. 228:43–49. doi:10.1016/j.envpol.2017.05.026.
  • Chen, X., H. Peng, J. Xiao, A. Guan, B. Xie, B. He, and Q. Chen. 2017b. Benzo(a)pyrene enhances the EMT-associated migration of lung adenocarcinoma A549 cells by upregulating Twist1. Oncol. Rep. 38 (4):2141–47. doi:10.3892/or.2017.5874.
  • Cheung, K., N. Daher, W. Kam, M. M. Shafer, Z. Ning, J. J. Schauer, and C. Sioutas. 2011. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos. Environ. 45 (16):2651–62. doi:10.1016/j.atmosenv.2011.02.066.
  • Chi, Y., Q. Huang, Y. Lin, G. Ye, H. Zhu, and S. Dong. 2018. Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze river delta region in China on human bronchial epithelial cells. J. Environ. Sci. 66:155–64. doi:10.1016/j.jes.2017.05.002.
  • Chidgey, M., and C. Dawson. 2007. Desmosomes: A role in cancer? Br. J. Cancer 96 (12):1783–87. doi:10.1038/sj.bjc.6603808.
  • Ching, J., and M. Kajino. 2018. Aerosol mixing state matters for particles deposition in human respiratory system. Sci. Rep. 8 (1):1–11. doi:10.1038/s41598-018-27156-z.
  • Choo, W. H., C. H. Park, S. E. Jung, B. Moon, H. Ahn, J. S. Ryu, K.-S. Kim, Y. H. Lee, I. J. Yu, and S. M. Oh. 2016. Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells. Toxicol. Vitro. 37:41–49. doi:10.1016/j.tiv.2016.09.003.
  • Churg, A., and S. Vedal. 1996. Carinal and tubular airway particle concentrations in the large airways of non-smokers in the general population: Evidence for high particle concentration at airway carinas. Occup. Environ. Med. 53 (8):553–58. doi:10.1136/oem.53.8.553.
  • Cohen, A. J., M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global burden of diseases study 2015. Lancet 389 (10082):1907–18. doi:10.1016/S0140-6736(17)30505-6.
  • Cui, S., Z. He, Z. Zhu, Z. Sun, Y. Xu, J. Wang, Y. Bao, D. Ji, S. Liu, J. Liu, et al. 2015. Microfluidic analysis of PM2.5-induced epithelial–mesenchymal transition in human bronchial epithelial 16HBE cells. Microfluid. Nanofluid. 19 (2):263–72. doi:10.1007/s10404-014-1499-3.
  • D’Amato, G., L. Cecchi, M. D’Amato, and G. Liccardi. 2010. Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update. J. Invest. Allergol. Clin. Immunol. 20 (2):95–102.
  • Darquenne, C. 2012. Aerosol deposition in health and disease. J. Aerosol. Med. Pulm. Drug Deliv. 25 (3):140–47. doi:10.1089/jamp.2011.0916.
  • Dauphin, M., C. Barbe, S. Lemaire, B. Nawrocki-Raby, E. Lagonotte, G. Delepine, P. Birembaut, C. Gilles, and M. Polette. 2013. Vimentin expression predicts the occurrence of metastases in non-small cell lung carcinomas. Lung Cancer 81 (1):117–22. doi:10.1016/j.lungcan.2013.03.011.
  • De Oliveira, B. F. A., A. P. M.Chacra, T. S. Frauches, A. Vallochi, and S. Hacon. 2014. A curated review of recent literature of biomarkers used for assessing air pollution exposures and effects in humans. J. Toxicol. Environ. Health B 17 (7–8):369–410. doi:10.1080/10937404.2014.976893.
  • Dieme, D., M. Cabral-Ndior, G. Garçon, A. Verdin, S. Billet, F. Cazier, D. Courcot, A. Diouf, and P. Shirali. 2012. Relationship between physicochemical characterization and toxicity of fine particulate matter (PM2.5) collected in Dakar city (Senegal). Environ. Res. 113:1–13. doi:10.1016/j.envres.2011.11.009.
  • Dietrich, C., and B. Kaina. 2010. The aryl hydrocarbon receptor (AhR) in the regulation of cell–cell contact and tumor growth. Carcinogenesis 31 (8):1319–28. doi:10.1093/carcin/bgq028.
  • Doehn, U., C. Hauge, S. R. Frank, C. J. Jensen, K. Duda, J. V. Nielsen, M. S. Cohen, J. V. Johansen, B. R. Winther, L. R. Lund, et al. 2009. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell. 35 (4):511–22. doi:10.1016/j.molcel.2009.08.002.
  • Doerner, A. M., and B. L. Zuraw. 2009. TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir. Res. 10 (1):100. doi:10.1186/1465-9921-10-100.
  • Dusek, R. L., and L. D. Attardi. 2011. Desmosomes: New perpetrators in tumour suppression. Nat. Rev. Cancer 11 (5):317–23. doi:10.1038/nrc3051.
  • Dysart, M. M., B. R. Galvis, A. G. Russell, and T. H. Barker. 2014. Environmental Particulate (PM2.5) augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta. Plos One 9 (9):e106821. doi:10.1371/journal.pone.0106821.
  • Fan, J., S. Li, C. Fan, Z. Bai, and K. Yang. 2016. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 23 (1):843–50. doi:10.1007/s11356-015-5321-x.
  • Farghadan, A., K. Poorbahrami, S. Jalal, J. M. Oakes, F. Coletti, and A. Arzani. 2020. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways. Comput. Biol. Med. 120:103703. doi:10.1016/j.compbiomed.2020.103703.
  • Francart, M.-E., J. Lambert, A. M. Vanwynsberghe, E. W. Thompson, M. Bourcy, M. Polette, and C. Gilles. 2018. Epithelial–mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev. Dyn. 247:432–50. doi:10.1002/dvdy.24506.
  • Freshney, R. I. 2015. Culture of animal cells: A manual of basic technique and specialized applications, 7th ed., 728. New Jersey: John Wiley & Sons. ISBN: 978-1-118-87365-6.
  • Fu, P., and K. Kawamura. 2010. Ubiquity of bisphenol A in the atmosphere. Environ. Pollut. 158 (10):3138–43. doi:10.1016/j.envpol.2010.06.040.
  • Fu, Y., R. Lu, J. Cui, H. Sun, H. Yang, Q. Meng, S. Wu, M. Aschner, X. Li, and R. Chen. 2019. Inhibition of ATP citrate lyase (ACLY) protects airway epithelia from PM2.5-induced epithelial-mesenchymal transition. Ecotoxicol. Environ. Saf. 167:309–16. doi:10.1016/j.ecoenv.2018.10.033.
  • Gao, M., R. Jia, T. Qiu, M. Han, Y. Song, and X. Wang. 2015. Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmos. Environ. 118:203–10. doi:10.1016/j.atmosenv.2015.08.004.
  • Ghio, A. J., M. S. Carraway, and M. C. Madden. 2012. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health Part B 15 (1):1–21. doi:10.1080/10937404.2012.632359.
  • Gohy, S. T., C. Hupin, C. Fregimilicka, B. R. Detry, C. Bouzin, H. G. Chevronay, M. Lecocq, B. Weynand, M. Z. Ladjemi, C. E. Pierreux, et al. 2015. Imprinting of the COPD airway epithelium for dedifferentiation and mesenchymal transition. Eur. Respir. J. 45 (5):1258–72. doi:10.1183/09031936.00135814.
  • Gohy, S. T., C. Hupin, C. Pilette, and M. Z. Ladjemi. 2016. Chronic inflammatory airway diseases: The central role of the epithelium revisited. Clin. Exp. Allergy 46 (4):529–42. doi:10.1111/cea.12712.
  • GOLD. 2020. Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease – 2020 Report. 125.
  • Gualtieri, M., F. Ledoux, A. Verdin, S. Billet, P. Martin, and D. Courcot. 2017. Particulate matter physico-chemical characterization and in vitro toxicological effects. In Airborne particles: Origin, emissions and health impacts, ed. D. P. Kumar, 241–92. New York, NY: Nova Science Publisher. ISBN: 978-1-53610-965-8.
  • Gualtieri, M., E. Longhin, M. Mattioli, P. Mantecca, V. Tinaglia, E. Mangano, M. C. Proverbio, G. Bestetti, M. Camatini, and C. Battaglia. 2012. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol. Lett. 209 (2):136–45. doi:10.1016/j.toxlet.2011.11.015.
  • Gualtieri, M., M. G. Grollino, C. Consales, F. Costabile, M. Manigrasso, P. Avino, M. Aufderheide, E. Cordelli, L. Di Liberto, E. Petralia, et al. 2018. Is it the time to study air pollution effects under environmental conditions? A case study to support the shift of in vitro toxicology from the bench to the field. Chemosphere 207:552–64. doi:10.1016/j.chemosphere.2018.05.130.
  • Hackett, T.-L. 2012. Epithelial–mesenchymal transition in the pathophysiology of airway remodelling in asthma. Curr. Opin. Allergy. Clin. Immunol. 12 (1):53. doi:10.1097/ACI.0b013e32834ec6eb.
  • Hackett, T.-L., S. M. Warner, D. Stefanowicz, F. Shaheen, D. V. Pechkovsky, L. A. Murray, R. Argentieri, A. Kicic, S. M. Stick, T. R. Bai, et al. 2009. Induction of epithelial–mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1. Am. J. Respir. Crit. Care Med. 180 (2):122–33. doi:10.1164/rccm.200811-1730OC.
  • Heßelbach, K., G.-J. Kim, S. Flemming, T. Häupl, M. Bonin, R. Dornhof, S. Günther, I. Merfort, and M. Humar. 2017. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM2.5) from biomass combustion. Epigenetics 12:779–92. doi:10.1080/15592294.2017.1356555.
  • Heyder, J. 2004. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1 (4):315–20. doi:10.1513/pats.200409-046TA.
  • Hofmann, W. 2011. Modelling inhaled particle deposition in the human lung—A review. J. Aerosol. Sci. 42 (10):693–724. doi:10.1016/j.jaerosci.2011.05.007.
  • Hogg, J. C., P. D. Paré, and T.-L. Hackett. 2017. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol. Rev. 97 (2):529–52. doi:10.1152/physrev.00025.2015.
  • Hori, K., A. Sen, and S. Artavanis-Tsakonas. 2013. Notch signaling at a glance. J. Cell. Sci. 126 (10):2135–40. doi:10.1242/jcs.127308.
  • Hosper, N. A., P. P. Van den Berg, S. de Rond, E. R. Popa, M. J. Wilmer, R. Masereeuw, and R. A. Bank. 2013. Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Exp. Cell Res. 319 (19):3000–09. doi:10.1016/j.yexcr.2013.07.014.
  • Hou, W., S. Hu, C. Li, H. Ma, Q. Wang, G. Meng, T. Guo, and J. Zhang. 2019. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: A possible link between COPD and lung cancer. Biomed. Res. Int. 2019:10. doi:10.1155/2019/2025636.
  • Huang, Q., Y. Chi, J. Deng, Y. Liu, Y. Lu, J. Chen, and S. Dong. 2017. Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci. Rep. 7 (1):1–9. doi:10.1038/s41598-017-09818-6.
  • Huang, R. Y.-J., P. Guilford, and J. P. Thiery. 2012. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J. Cell. Sci. 125 (19):4417–22. doi:10.1242/jcs.099697.
  • Hylkema, M. N., P. J. Sterk, W. I. De Boer, and D. S. Postma. 2007. Tobacco use in relation to COPD and asthma. Eur. Respir. J. 29 (3):438–45. doi:10.1183/09031936.00124506.
  • Hyun, K.-A., G.-B. Koo, H. Han, J. Sohn, W. Choi, S.-I. Kim, H.-I. Jung, and Y.-S. Kim. 2016. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget 7 (17):24677–87. doi:10.18632/oncotarget.8250.
  • IARC. 2020. International agency for research on cancer. World Cancer Report: Cancer Research for Cancer Prevention, Lyon, 611. ISBN: 978-92-832-0448-0.
  • Ijaz, T., K. Pazdrak, M. Kalita, R. Konig, S. Choudhary, B. Tian, I. Boldogh, and A. R. Brasier. 2014. Systems biology approaches to understanding epithelial mesenchymal transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ. J. 7:1–14. doi:10.1186/1939-4551-7-13.
  • Jiang, W., X.-G. Pang, Q. Wang, Y.-X. Shen, X.-K. Chen, and J.-J. Xi. 2012. Prognostic role of twist, slug, and foxc2 expression in stage I non–small-cell lung cancer after curative resection. Clin. Lung Cancer 13 (4):280–87. doi:10.1016/j.cllc.2011.11.005.
  • Jolly, M. K., C. Ward, M. S. Eapen, S. Myers, O. Hallgren, H. Levine, and S. S. Sohal. 2018. Epithelial–mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev. Dyn. 247:346–58. doi:10.1002/dvdy.24541.
  • Jung, H.-Y., L. Fattet, and J. Yang. 2015. Molecular pathways: Linking tumor microenvironment to epithelial–mesenchymal transition in metastasis. Clin. Cancer Res. 21 (5):962–68. doi:10.1158/1078-0432.CCR-13-3173.
  • Kage, H., and Z. Borok. 2012. EMT and interstitial lung disease: A mysterious relationship. Curr. Opin. Pulm. Med. 18 (5):517–23. doi:10.1097/MCP.0b013e3283566721.
  • Kalluri, R., and M. Zeisberg. 2006. Fibroblasts in cancer. Nat. Rev. Cancer 6 (5):392–401. doi:10.1038/nrc1877.
  • Kalluri, R., and R. A. Weinberg. 2009. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119 (6):1420–28. doi:10.1172/JCI39104.
  • Kasai, H., J. T. Allen, R. M. Mason, T. Kamimura, and Z. Zhang. 2005. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res. 6 (1):56. doi:10.1186/1465-9921-6-56.
  • Kelly, F. 2003. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 60 (8):612–16. doi:10.1136/oem.60.8.612.
  • Kelly, F. J., and J. C. Fussell. 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60:504–26. doi:10.1016/j.atmosenv.2012.06.039.
  • Kim, H.-J., B. C. Litzenburger, X. Cui, D. A. Delgado, B. C. Grabiner, X. Lin, M. T. Lewis, M. M. Gottardis, T. W. Wong, R. M. Attar, et al. 2007. Constitutively active Type I Insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-κB and Snail. Mol. Cell. Biol. 27 (8):3165–75. doi:10.1128/MCB.01315-06.
  • Knaapen, A. M., T. Shi, P. J. A. Borm, and R. P. F. Schins. 2002. Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol. Cell. Biochem. 234–235 (1):317–26. doi:10.1023/a:1015970023889.
  • Kolosova, I., D. Nethery, and J. A. Kern. 2011. Role of Smad2/3 and p38 MAP kinase in TGF-β1-induced epithelial–mesenchymal transition of pulmonary epithelial cells. J. Cell. Physiol. 226 (5):1248–54. doi:10.1002/jcp.22448.
  • Lamouille, S., E. Connolly, J. W. Smyth, R. J. Akhurst, and R. Derynck. 2012. TGF-β-induced activation of mTOR complex 2 drives epithelial–mesenchymal transition and cell invasion. J. Cell. Sci. 125 (5):1259–73. doi:10.1242/jcs.095299.
  • Lamouille, S., J. Xu, and R. Derynck. 2014. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15:178–96. doi:10.1038/nrm3758.
  • Laniado-Laborín, R. 2009. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st Century. Int. J. Environ. Res. Public Health 6 (1):209–24. doi:10.3390/ijerph6010209.
  • Lee, H.-M., K.-A. Hwang, and K.-C. Choi. 2017. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol. Cell. Endocrinol. 457:103–13. doi:10.1016/j.mce.2016.12.026.
  • Lee, H.-R., M. C. Pyo, S. A. Chae, C.-O. Hong, and K.-W. Lee. 2019. Inhibitory effect of chebulic acid on alveolar epithelial to mesenchymal transition in response to urban particulate matter using co-treatment and post-treatment exposure. Biol. Pharm. Bull. 42 (8):1322–31. doi:10.1248/bpb.b19-00061.
  • Lepeule, J., F. Laden, D. Dockery, and J. Schwartz. 2012. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard six cities study from 1974 to 2009. Environ. Health Perspect. 120 (7):965–70. doi:10.1289/ehp.1104660.
  • Lesage, J., M. Suarez-Carmona, D. Neyrinck-Leglantier, S. Grelet, S. Blacher, W. Hunziker, P. Birembaut, A. Noël, B. Nawrocki-Raby, C. Gilles, et al. 2017. Zonula occludens-1/NF-κB/CXCL8: A new regulatory axis for tumor angiogenesis. Faseb J. 31 (4):1678–88. doi:10.1096/fj.201600890R.
  • Li, L., L. Qi, Z. Liang, W. Song, Y. Liu, Y. Wang, B. Sun, B. Zhang, and W. Cao. 2015. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int. J. Mol. Med. 36 (1):113–22. doi:10.3892/ijmm.2015.2222.
  • Líbalová, H., S. Krčková, K. Uhlířová, J. Kléma, M. Ciganek, P. Rössner, R. J. Šrám, J. Vondráček, M. Machala, and J. Topinka. 2014. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles. Mutat. Res./Fundam. Mol. Mech. Mutagen. 770:94–105. doi:10.1016/j.mrfmmm.2014.10.002.
  • Loffredo, L. F., H. Abdala‐Valencia, K. R. Anekalla, L. Cuervo‐Pardo, C. J. Gottardi, and S. Berdnikovs. 2017. Beyond epithelial-to-mesenchymal transition: Common suppression of differentiation programs underlies epithelial barrier dysfunction in mild, moderate, and severe asthma. Allergy 72 (12):1988–2004. doi:10.1111/all.13222.
  • Longhin, E., M. Camatini, A. Bersaas, P. Mantecca, and S. Mollerup. 2018. The role of SerpinB2 in human bronchial epithelial cells responses to particulate matter exposure. Arch. Toxicol. 92 (9):2923–33. doi:10.1007/s00204-018-2259-z.
  • Longhin, E., M. Gualtieri, L. Capasso, R. Bengalli, S. Mollerup, J. A. Holme, J. Øvrevik, S. Casadei, C. Di Benedetto, P. Parenti, et al. 2016. Physico-chemical properties and biological effects of diesel and biomass particles. Environ. Pollut. 215:366–75. doi:10.1016/j.envpol.2016.05.015.
  • Longhin, E., P. Mantecca, and M. Gualtieri. 2020. Fifteen years of airborne particulates in vitro toxicology in Milano: Lessons and perspectives learned. Int. J. Mol. Sci. 21 (7):2489. doi:10.3390/ijms21072489.
  • Loomis, D., Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, R. Baan, H. Mattock, and K. Straif; International Agency for Research on Cancer Monograph Working Group IARC. 2013. The carcinogenicity of outdoor air pollution. Lancet Oncol. 14 (13):1262–63. doi:10.1016/S1470-2045(13)70487-X.
  • Luo, F., H. Wei, H. Guo, Y. Li, Y. Feng, Q. Bian, and Y. Wang. 2019. LncRNA MALAT1, an lncRNA acting via the miR-204/ZEB1 pathway, mediates the EMT induced by organic extract of PM2.5 in lung bronchial epithelial cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 317:L87–L98. doi:10.1152/ajplung.00073.2019.
  • Ma, J., L. Chen, Y. Guo, Q. Wu, M. Yang, M. Wu, and K. Kannan. 2014. Phthalate diesters in Airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment. Sci. Total Environ. 497–498:467–74. doi:10.1016/j.scitotenv.2014.08.012.
  • Manshouri, R., E. Coyaud, S. T. Kundu, D. H. Peng, S. A. Stratton, K. Alton, R. Bajaj, J. J. Fradette, R. Minelli, M. D. Peoples, et al. 2019. ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer. Nat. Commun. 10 (1):1–15. doi:10.1038/s41467-019-12832-z.
  • Margaron, Y., T. Nagai, L. Guyon, L. Kurzawa, A.-P. Morel, A. Pinheiro, L. Blanchoin, F. Reyal, A. Puisieux, and M. Théry, 2019. Biophysical properties of intermediate states of EMT outperform both epithelial and mesenchymal states. bioRxiv 797654. doi: 10.1101/797654
  • Martonen, T. B. 1992. Deposition patterns of cigarette smoke in human airways. Am. Ind. Hyg. Assoc. J. 53 (1):6–18. doi:10.1080/15298669291359249.
  • Martonen, T. B., Y. Yang, and Z. Q. Xue. 1994. Effects of carinal ridge shapes on lung airstreams. Aerosol Sci. Technol. 21 (2):119–36. doi:10.1080/02786829408959702.
  • Merikallio, H., T. Turpeenniemi-Hujanen, P. Pääkkö, R. Mäkitaro, K. Riitta, S. Salo, T. Salo, T. Harju, and Y. Soini. 2012. Snail promotes an invasive phenotype in lung carcinoma. Respir. Res. 13 (1):104. doi:10.1186/1465-9921-13-104.
  • Metzger, K. B., P. E. Tolbert, M. Klein, J. L. Peel, W. D. Flanders, K. Todd, J. A. Mulholland, P. B. Ryan, and H. Frumkin. 2004. Ambient air pollution and cardiovascular emergency department visits. Epidemiology 15 (1):46–56. doi:org/0000101748.28283.97.
  • Michael, S., M. Montag, and W. Dott. 2013. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ. Pollut. Sel. Papers Urban Environ. Pollut. 183:19–29. 2012. doi:10.1016/j.envpol.2013.01.026.
  • Milano, A., F. Mazzetta, S. Valente, D. Ranieri, L. Leone, A. Botticelli, C. E. Onesti, S. Lauro, S. Raffa, M. R. Torrisi, et al. 2018. Molecular detection of EMT markers in circulating tumor cells from metastatic non-small cell lung cancer patients: Potential role in clinical practice. Anal. Cell. Pathol. 2018:3506874. doi:10.1155/2018/3506874.
  • Mittal, V. 2016. Epithelial mesenchymal transition in aggressive lung cancers. Adv. Exp. Med. Biol. 890:37–56. doi:10.1007/978-3-319-24932-2_3.
  • Murray, L. A., R. Dunmore, A. Camelo, C. A. Da Silva, M. J. Gustavsson, D. M. Habiel, T. L. Hackett, C. M. Hogaboam, M. A. Sleeman, and D. A. Knight. 2017. Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir. Res. 18 (1):82. doi:10.1186/s12931-017-0565-2.
  • Nalluri, S. M., J. W. O’Connor, and E. W. Gomez. 2015. Cytoskeletal signaling in TGFβ-induced epithelial–mesenchymal transition. Cytoskeleton 72 (11):557–69. doi:10.1002/cm.21263.
  • Nawijn, M. C., T. L. Hackett, D. S. Postma, A. J. M. van Oosterhout, and I. H. Heijink. 2011. E-cadherin: Gatekeeper of airway mucosa and allergic sensitization. Trends Immunol. 32 (6):248–55. doi:10.1016/j.it.2011.03.004.
  • Nawrocki‐Raby, B., C. Gilles, M. Polette, E. Bruyneel, J.-Y. Laronze, N. Bonnet, J.-M. Foidart, M. Mareel, and P. Birembaut. 2003. Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int. J. Cancer. 105 (6):790–95. doi:10.1002/ijc.11168.
  • Nawshad, A., D. Medici, C.-C. Liu, and E. D. Hay. 2007. TGFβ3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J. Cell. Sci. 120 (9):1646–53. doi:10.1242/jcs.003129.
  • Ni, L., C.-C. Chuang, and L. Zuo. 2015. Fine particulate matter in acute exacerbation of COPD. Front Physiol. 6. doi:10.3389/fphys.2015.00294.
  • Nieto, M. A., R. Y.-J. Huang, R. A. Jackson, and J. P. Thiery. 2016. EMT: 2016. Cell 166 (1):21–45. doi:10.1016/j.cell.2016.06.028.
  • NIST. 2013. Certificate of analysis standard reference material 2975 (Certificate of analysis). Gaithersburg, MD. 11.
  • NIST. 2015. Certificate of analysis standard reference material 1648a (Certificate of analysis). Gaithersburg, MD. 17.
  • Nowrin, K., S. S. Sohal, G. Peterson, R. Patel, and E. H. Walters. 2014. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: Fibrosis, remodeling and cancer. Expert. Rev. Respir. Med. 8 (5):547–59. doi:10.1586/17476348.2014.948853.
  • Okada, T., S. Sinha, I. Esposito, G. Schiavon, M. A. López-Lago, W. Su, C. A. Pratilas, C. Abele, J. M. Hernandez, M. Ohara, et al. 2015. The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat. Cell Biol. 17 (1):81–94. doi:10.1038/ncb3082.
  • Pain, M., O. Bermudez, P. Lacoste, P.-J. Royer, K. Botturi, A. Tissot, S. Brouard, O. Eickelberg, and A. Magnan. 2014. Tissue remodelling in chronic bronchial diseases: From the epithelial to mesenchymal phenotype. Eur. Respir. Rev. 23 (131):118–30. doi:10.1183/09059180.00004413.
  • Park, M., H. S. Joo, K. Lee, M. Jang, S. D. Kim, I. Kim, L. J. S. Borlaza, H. Lim, H. Shin, K. H. Chung, et al. 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8 (1):1–11. doi:10.1038/s41598-018-35398-0.
  • Peel, J. L., P. E. Tolbert, M. Klein, K. B. Metzger, W. D. Flanders, K. Todd, J. A. Mulholland, P. B. Ryan, and H. Frumkin. 2005. Ambient air pollution and respiratory emergency department visits. Epidemiology 16 (2):164–74. doi:10.1097/01.ede.0000152905.42113.db.
  • Plummer, L. E., W. Ham, M. J. Kleeman, A. Wexler, and K. E. Pinkerton. 2012. Influence of season and location on pulmonary response to california’s San Joaquin Valley airborne particulate matter. J. Toxicol. Environ. Health A 75 (5):253–71. doi:10.1080/15287394.2012.640102.
  • Polette, M., B. Nawrocki-Raby, C. Gilles, C. Clavel, and P. Birembaut. 2004. Tumour invasion and matrix metalloproteinases. Crit. Rev. Oncol./ Hematol. Stromal React. Tumour Growth. 49 (3):179–86. doi:10.1016/j.critrevonc.2003.10.008.
  • Polette, M., M. Mestdagt, S. Bindels, B. Nawrocki-Raby, W. Hunziker, J.-M. Foidart, P. Birembaut, and C. Gilles. 2007. β-Catenin and ZO-1: Shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cell Tissues Organ. 185 (1–3):61–65. doi:10.1159/000101304.
  • Pope, C. A. I., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287 (9):1132–41. doi:10.1001/jama.287.9.1132.
  • Puisieux, A., T. Brabletz, and J. Caramel. 2014. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16 (6):488–94. doi:10.1038/ncb2976.
  • Rakkestad, K. E., C. J. Dye, K. E. Yttri, J. A. Holme, J. K. Hongslo, P. E. Schwarze, and R. Becher. 2007. Phthalate levels in Norwegian indoor air related to particle size fraction. J. Environ. Monit. 9 (12):1419–25. doi:10.1039/B709947A.
  • Reyes-Reyes, E. M., I. Aispuro, M. A. Tavera-Garcia, M. Field, S. Moore, I. Ramos, and K. S. Ramos. 2017. LINE-1 couples EMT programming with acquisition of oncogenic phenotypes in human bronchial epithelial cells. Oncotarget 8 (61):103828–42. doi:10.18632/oncotarget.21953.
  • Reyes-Reyes, E. M., I. N. Ramos, M. A. Tavera-Garcia, and K. S. Ramos. 2016. The aryl hydrocarbon receptor agonist benzo(a)pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-β1 signaling: Implications in hepatocellular carcinogenesis. Am. J. Cancer Res. 6 (5):1066–77.
  • Rico-Leo, E. M., A. Alvarez-Barrientos, and P. M. Fernandez-Salguero. 2013. Dioxin receptor expression inhibits basal and transforming growth factor β-induced epithelial-to-mesenchymal transition. J. Bio. Chem. 288 (11):7841–56. doi:10.1074/jbc.M112.425009.
  • Rönkkö, T. J., P. I. Jalava, M. S. Happo, S. Kasurinen, O. Sippula, A. Leskinen, H. Koponen, K. Kuuspalo, J. Ruusunen, O. Väisänen, et al. 2018. Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. Sci. Total Envir. 639:1290–310. doi:10.1016/j.scitotenv.2018.05.260.
  • Royce, S. G., L. Tan, A. A. Koek, and M. L. K. Tang. 2009. Effect of extracellular matrix composition on airway epithelial cell and fibroblast structure: Implications for airway remodeling in asthma. Ann. Allergy Asthma Immunol. 102 (3):238–46. doi:10.1016/S1081-1206(10)60087-7.
  • Rynning, I., J. Neca, K. Vrbova, H. Libalova, P. Rossner, J. A. Holme, K. B. Gützkow, A. K. J. Afanou, Y. J. Arnoldussen, E. Hruba, et al. 2018. In Vitro transformation of human bronchial epithelial cells by diesel exhaust particles: Gene expression profiling and early toxic responses. Toxicol. Sci. 166:51–64. doi:10.1093/toxsci/kfy183.
  • Samet, J. M., H. Chen, E. R. Pennington, and P. A. Bromberg. 2019. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic. Biol. Med. doi:10.1016/j.freeradbiomed.2019.12.027.
  • Santibáñez-Andrade, M., Y. I. Chirino, I. González-Ramírez, Y. Sánchez-Pérez, and C. M. García-Cuellar. 2020. Deciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarks. Int. J. Mol. Sci. 21 (1):136. doi:10.3390/ijms21010136.
  • Sohal, S. S., D. Reid, A. Soltani, C. Ward, S. Weston, H. K. Muller, R. Wood-Baker, and E. H. Walters. 2011. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease. Respir. Res. 12 (1):130. doi:10.1186/1465-9921-12-130.
  • Sohal, S. S., M. Q. Mahmood, and E. H. Walters. 2014. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): Potential target for prevention of airway fibrosis and lung cancer. Clin. Transl. Med. 3 (1):33. doi:10.1186/s40169-014-0033-2.
  • Soini, Y. 2012. Tight junctions in lung cancer and lung metastasis: A review. Int. J. Clin. Exp. Pathol. 5 (2):126–136.
  • Song, C., J. He, L. Wu, T. Jin, X. Chen, R. Li, P. Ren, L. Zhang, and H. Mao. 2017. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 223:575–86. doi:10.1016/j.envpol.2017.01.060.
  • Sugiyama, T., K. Ueda, X. T. Seposo, A. Nakashima, M. Kinoshita, H. Matsumoto, F. Ikemori, A. Honda, H. Takano, T. Michikawa, et al. 2020. Health effects of PM2.5 sources on children’s allergic and respiratory symptoms in Fukuoka, Japan. Sci. Total Envir. 709:136023. doi:10.1016/j.scitotenv.2019.136023.
  • Sullivan, D. E., M. Ferris, H. Nguyen, E. Abboud, and A. R. Brody. 2009a. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J. Cell. Mol. Med. 13:1866–76. doi:10.1111/j.1582-4934.2009.00647.x.
  • Sullivan, N. J., A. K. Sasser, A. E. Axel, F. Vesuna, V. Raman, N. Ramirez, T. M. Oberyszyn, and B. M. Hall. 2009b. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene. 28:2940–47. doi:10.1038/onc.2009.180.
  • Syn, N., L. Wang, G. Sethi, J.-P. Thiery, and B.-C. Goh. 2016. Exosome-mediated metastasis: From epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol. Sci. 37 (7):606–17. doi:10.1016/j.tips.2016.04.006.
  • Tadokoro, A., N. Kanaji, D. Liu, H. Yokomise, R. Haba, T. Ishii, T. Takagi, N. Watanabe, N. Kita, N. Kadowaki, et al. 2016. Vimentin regulates invasiveness and is a poor prognostic marker in non-small cell lung cancer. Anticancer Res. 36 (4):1545–51.
  • Tam, A., M. Hughes, K. M. McNagny, M. Obeidat, T. L. Hackett, J. M. Leung, T. Shaipanich, D. R. Dorscheid, G. K. Singhera, C. W. T. Yang, et al. 2019. Hedgehog signaling in the airway epithelium of patients with chronic obstructive pulmonary disease. Sci. Rep. 9 (1):1–13. doi:10.1038/s41598-019-40045-3.
  • Taparra, K., P. T. Tran, and N. E. Zachara. 2016. Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes. Front. Oncol. 6. doi:10.3389/fonc.2016.00085.
  • Teng, Y. H.-F., R. S. Aquino, and P. W. Park. 2012. Molecular functions of syndecan-1 in disease. Matrix Biol. 31:3–16. doi:10.1016/j.matbio.2011.10.001.
  • Thevenot, P. T., J. Saravia, N. Jin, J. D. Giaimo, R. E. Chustz, S. Mahne, M. A. Kelley, V. Y. Hebert, B. Dellinger, T. R. Dugas, et al. 2013. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 48 (2):188–97. doi:10.1165/rcmb.2012-0052OC.
  • Thiery, J. P. 2002. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2 (6):442–54. doi:10.1038/nrc822.
  • Thiery, J. P., H. Acloque, R. Y. J. Huang, and M. A. Nieto. 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139 (5):871–90. doi:10.1016/j.cell.2009.11.007.
  • Thomson, E. M., D. Breznan, S. Karthikeyan, C. MacKinnon-Roy, J.-P. Charland, E. Dabek-Zlotorzynska, V. Celo, P. Kumarathasan, J. R. Brook, and R. Vincent. 2015. Cytotoxic and inflammatory potential of size-fractionated particulate matter collected repeatedly within a small urban area. Part Fiber Toxicol. 12 (1):24. doi:10.1186/s12989-015-0099-z.
  • Tsai, M.-Y., G. Hoek, M. Eeftens, K. de Hoogh, R. Beelen, T. Beregszászi, G. Cesaroni, M. Cirach, J. Cyrys, A. De Nazelle, et al. 2015. Spatial variation of PM elemental composition between and within 20 European study areas — results of the ESCAPE project. Environ. Int. 84:181–92. doi:10.1016/j.envint.2015.04.015.
  • Tsai, S.-S., and C.-Y. Yang. 2014. Fine particulate air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. J. Toxicol. Environ Health Part A 77 (4):192–201. doi:10.1080/15287394.2013.853337.
  • Valavanidis, A., T. Vlachogianni, K. Fiotakis, and S. Loridas. 2013. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 10 (9):3886–907. doi:10.3390/ijerph10093886.
  • Valcourt, U., M. Kowanetz, H. Niimi, C.-H. Heldin, and A. Moustakas. 2005. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16 (4):1987–2002. doi:10.1091/mbc.e04-08-0658.
  • Visalli, G., B. Baluce, M. Bertuccio, I. Picerno, and A. D. Pietro. 2015. Mitochondrial-mediated apoptosis pathway in alveolar epithelial cells exposed to the metals in combustion-generated particulate matter. J. Toxicol. Environ Health Part A 78 (11):697–709. doi:10.1080/15287394.2015.1024081.
  • Vu, T., L. Jin, and P. K. Datta. 2016. Effect of cigarette smoking on epithelial to mesenchymal transition (EMT) in lung cancer. J. Clin. Med. 5 (4):44. doi:10.3390/jcm5040044.
  • Vuong, N. Q., D. Breznan, P. Goegan, J. S. O’Brien, A. Williams, S. Karthikeyan, P. Kumarathasan, and R. Vincent. 2017. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Part. Fiber Toxicol 14 (1):39. doi:10.1186/s12989-017-0220-6.
  • Wang, H., G. Zhang, H. Zhang, F. Zhang, B. Zhou, F. Ning, H.-S. Wang, S.-H. Cai, and J. Du. 2014. Acquisition of epithelial–mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway. Eur. J. Pharmacol. 723:156–66. doi:10.1016/j.ejphar.2013.12.004.
  • Wang, Y., W. Zhai, H. Wang, X. Xia, and C. Zhang. 2015. Benzo(a)pyrene promotes A549 cell migration and invasion through up-regulating Twist. Arch. Toxicol. 89 (3):451–58. doi:10.1007/s00204-014-1269-8.
  • Wang, Y., Y. Zhong, T. Hou, J. Liao, C. Zhang, C. Sun, and G. Wang. 2019. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and in vitro. Ecotoxicol. Environ. Saf. 178:159–67. doi:10.1016/j.ecoenv.2019.03.086.
  • Wei, H., F. Liang, W. Cheng, R. Zhou, X. Wu, Y. Feng, and Y. Wang. 2017. The mechanisms for lung cancer risk of PM2.5 : Induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. Environ. Toxicol. 32 (11):2341–51. doi:10.1002/tox.22437.
  • WHO. 2018. Ambient (outdoor) air pollution. Fact sheet. Accessed March 06, 2020. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
  • WHO. 2020. Asthma. Fact sheet. Accessed May 13, 2020. https://www.who.int/news-room/fact-sheets/detail/asthma.
  • Wu, Y., Y. Niu, J. Leng, J. Xu, H. Chen, H. Li, L. Wang, J. Hu, D. Xia, and Y. Wu. 2020. Benzo(a)pyrene regulated A549 cell migration, invasion and epithelial-mesenchymal transition by up-regulating long non-coding RNA linc00673. Toxicol. Lett. 320:37–45. doi:10.1016/j.toxlet.2019.11.024.
  • Wu, Z., L. Yang, L. Cai, M. Zhang, X. Cheng, X. Yang, and J. Xu. 2007. Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an α-smooth muscle actin-Cre transgenic mouse. Respir. Res. 8 (1):1. doi:10.1186/1465-9921-8-1.
  • Xiao, D., and J. He. 2010. Epithelial mesenchymal transition and lung cancer. J. Thorac. Dis. 2 (3):154–159154–9. doi:10.3978/j.2072-1439.2010.02.03.7.
  • Xiao, H. 2013. The importance of bronchial epithelial junction integrity in asthma. J. Allergy Ther. 01 (S11). doi: 10.4172/2155-6121.S11-003.
  • Xu, F., X. Shi, X. Qiu, X. Jiang, Y. Fang, J. Wang, D. Hu, and T. Zhu. 2020. Investigation of the chemical components of ambient fine particulate matter (PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation. Environ. Int. 136:105475. doi:10.1016/j.envint.2020.105475.
  • Xu, Z., N. Wang, Y. Xu, L. Hua, D. Zhou, M. Zheng, and X. Deng. 2019c. Effects of chronic PM2.5 exposure on pulmonary epithelia: Transcriptome analysis of mRNA-exosomal miRNA interactions. Toxicol. Lett. 316:49–59. doi:10.1016/j.toxlet.2019.09.010.
  • Xu, Z., W. Ding, and X. Deng. 2019a. PM2.5, Fine particulate matter: A novel player in the epithelial-mesenchymal transition? Front Physiol. 10. doi:10.3389/fphys.2019.01404.
  • Xu, Z., Z. Li, Z. Liao, S. Gao, L. Hua, X. Ye, Y. Wang, S. Jiang, N. Wang, D. Zhou, et al. 2019b. PM2.5 induced pulmonary fibrosis in vivo and in vitro. Ecotoxicol. Environ. Saf. 171:112–21. doi:10.1016/j.ecoenv.2018.12.061.
  • Yamashita, M., K. Fatyol, C. Jin, X. Wang, Z. Liu, and Y. E. Zhang. 2008. TRAF6 mediates smad-independent activation of JNK and p38 by TGF-β. Mol. Cell. 31 (6):918–24. doi:10.1016/j.molcel.2008.09.002.
  • Yang, D., M. Ma, W. Zhou, B. Yang, and C. Xiao. 2017. Inhibition of miR-32 activity promoted EMT induced by PM2.5 exposure through the modulation of the Smad1-mediated signaling pathways in lung cancer cells. Chemosphere. 184:289–98. doi:10.1016/j.chemosphere.2017.05.152.
  • Yang, H., H. Zhang, T. Pan, H. Wang, and Y. Wang. 2018. Benzo(a)pyrene promotes migration, invasion and metastasis of lung adenocarcinoma cells by upregulating TGIF. Toxicol. Lett. 294:11–19. doi:10.1016/j.toxlet.2018.05.005.
  • Yang, J., P. Antin, G. Berx, C. Blanpain, T. Brabletz, M. Bronner, K. Campbell, A. Cano, J. Casanova, G. Christofori, et al. 2020. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 1–12. doi:10.1038/s41580-020-0237-9.
  • Yang, M.-H., M.-Z. Wu, S.-H. Chiou, P.-M. Chen, S.-Y. Chang, C.-J. Liu, S.-C. Teng, and K.-J. Wu. 2008. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10 (3):295–305. doi:10.1038/ncb1691.
  • Yang, Y.-L., M.-W. Chen, and L. Xian. 2014. Prognostic and clinicopathological significance of downregulated E-cadherin expression in patients with non-small cell lung cancer (NSCLC): A meta-analysis. Plos One 9 (6):e99763. doi:10.1371/journal.pone.0099763.
  • Yilmaz, M., and G. Christofori. 2009. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. doi:10.1007/s10555-008-9169-0.
  • Yuan, X., H. Wu, N. Han, H. Xu, Q. Chu, S. Yu, Y. Chen, and K. Wu. 2014. Notch signaling and EMT in non-small cell lung cancer: Biological significance and therapeutic application. J. Hematol. Oncol. 7 (1):87. doi:10.1186/s13045-014-0087-z.
  • Yue, D., H. Li, J. Che, Y. Zhang, H.-H. K. Tseng, J. Q. Jin, T. M. Luh, E. Giroux-Leprieur, M. Mo, Q. Zheng, et al. 2014. Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas. J. Exp. Clin. Cancer Res. 33 (1):34. doi:10.1186/1756-9966-33-34.
  • Yue, H., Y. Yun, R. Gao, G. Li, and N. Sang. 2015. Winter polycyclic aromatic hydrocarbon-bound particulate matter from peri-urban North China promotes lung cancer cell metastasis. Environ. Sci. Technol. 49 (24):14484–93. doi:10.1021/es506280c.
  • Zeisberg, M., and E. G. Neilson. 2009. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119 (6):1429–37. doi:10.1172/JCI36183.
  • Zhang, J., and L. Ma. 2012. MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer Metastasis Rev. 31 (3–4):653–62. doi:10.1007/s10555-012-9368-6.
  • Zhang, X., G. Liu, Y. Kang, Z. Dong, Q. Qian, and X. Ma. 2013. N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. Plos One 8 (3):e57692. doi:10.1371/journal.pone.0057692.
  • Zhang, Z., C. Kleinstreuer, J. F. Donohue, and C. S. Kim. 2005. Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol. Sci. 36 (2):211–33. doi:10.1016/j.jaerosci.2004.08.006.
  • Zhao, F., and W. T. Klimecki. 2015. Culture conditions profoundly impact phenotype in BEAS-2B, a human pulmonary epithelial model. J. Appl. Toxicol. 35 (8):945–51. doi:10.1002/jat.3094.
  • Zhao, Z., X. Cheng, Y. Wang, R. Han, L. Li, T. Xiang, L. He, H. Long, B. Zhu, and Y. He. 2014. Metformin inhibits the IL-6-induced epithelial-mesenchymal transition and lung adenocarcinoma growth and metastasis. PLoS One 9. doi:10.1371/journal.pone.0095884.
  • Zou, Y., C. Jin, Y. Su, J. Li, and B. Zhu. 2016. Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. Environ. Pollut. 212:627–35. doi:10.1016/j.envpol.2016.03.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.