300
Views
2
CrossRef citations to date
0
Altmetric
Review

A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil

, , , &

References

  • Alves, P. R. L., E. J. B. N. Cardoso, A. M. Martines, J. P. Sousa, and A. Pasini. 2013. Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90 (11):2674–82. doi:https://doi.org/10.1016/j.chemosphere.2012.11.046.
  • Alves, N., S. Hacon, M. Galvao, M. Peixotoc, P. Artaxo, P. Vasconcellos, and S. de Medeiros. 2014. Genetic damage of organic matter in the Brazilian Amazon: A comparative study between intense and moderate biomass burning. Environ. Res. 130:51–58. doi:10.1016/j.envres.2013.12.011.
  • Alves, D., F. Kummrow, A. Cardoso, D. Morales, and G. Umbuzeiro. 2016. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning. Environ. Mol. Mutagen. 57 (1):41–50. doi:10.1002/em.21970.
  • Alves, N., A. Loureiro, F. dos Santos, K. Nascimento, R. Dallacort, P. Vasconcellos, S. Hacon, P. Artaxo, and S. de Medeiros. 2011. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicol. Environ. Saf. 74 (5):1427–33. doi:10.1016/j.ecoenv.2011.04.007.
  • Alves, N., A. Vessoni, A. Quinet, R. Fortunato, G. Kajitani, M. Peixoto, S. Hacon, P. Artaxo, P. Saldiva, C. Menck, et al. 2017. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Sci Rep 7 (1). doi:10.1038/s41598-017-11024-3.
  • Amato-Lourenco, L., D. Lobo, E. Guimaraes, T. Moreira, R. Carvalho-Oliveira, M. Saiki, P. Saldiva, and T. Mauad. 2017. Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens. Sci. Total Environ. 575:1438–44. doi:10.1016/j.scitotenv.2016.09.221.
  • Azqueta, A., C. Ladeira, L. Giovannelli, E. Boutet-Robinet, S. Bonassi, M. Neri, G. Gajski, S. Duthie, C. Del Bo’, P. Riso, et al. 2020. Application of the comet assay in human biomonitoring: A COMET perspective. Mutat. Res. Mutat. Res 783:108288. doi:10.1016/j.mrrev.2019.108288.
  • Baesse, C., V. Tolentino, A. M. D. da Silva, A. D. A. Silva, G. Ferreira, L. Paniago, J. Nepomuceno, and C. de Melo. 2015. Micronucleus as biomarker of genotoxicity in birds from Brazilian Cerrado. Ecotoxicol. Environ. Saf. 115:223–28. doi:10.1016/j.ecoenv.2015.02.024.
  • Baesse, C., V. Tolentino, S. Morelli, and C. Melo. 2019. Effect of urbanization on the micronucleus frequency in birds from forest fragments. Ecotoxicol. Environ. Saf. 171:631–37. doi:10.1016/j.ecoenv.2019.01.026.
  • Baldacci, S., F. Gorini, M. Santoro, A. Pierini, F. Minichilli, and F. Bianchi. 2018. Environmental and individual exposure and the risk of congenital anomalies: A review of recent epidemiological evidence. Epidemiol Prev 42 (1):1–34. Suppl. doi:10.19191/EP18.3-4.S1.P001.057.
  • Bateson, T. F., and J. Schwartz. 2007. Children’s response to air pollutants. J. Toxicol. Environ. Health Part A 71 (3):238–43. doi:10.1080/15287390701598234.
  • Battershill, J. M., K. Burnett, and S. Bull. 2008. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: Impact on design of biomonitoring studies. Mutagenesis 23 (6):423–37. doi:https://doi.org/10.1093/mutage/gen040.
  • Bednova, O. V., and V. A. Kuznetsov. 2019. Effect of atmospheric air pollution on local nitrogen cycles in the urban forest ecosystemVol. 316p. 012076. 10.1088/1755-1315/316/1/012076
  • Boas, D., M. Matsuda, O. Toffoletto, M. Garcia, P. Saldiva, and M. Marquezini. 2018. Workers of Sao Paulo city, Brazil, exposed to air pollution: Assessment of genotoxicity. Mutat. Res.-Genet. Toxicol. Environ. Mutagen 834:18–24. doi:10.1016/j.mrgentox.2018.08.002.
  • Bonassi, S., E. Coskun, M. Ceppi, C. Lando, C. Bolognesi, S. Burgaz, N. Holland, M. Kirsh-Volders, S. Knasmueller, E. Zeiger, et al. 2011. The human MicroNucleus project on exfoliated buccal cells (HUMNXL): The role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat. Res. 728:88–97. doi:10.1016/j.mrrev.2011.06.005.
  • Bonassi, S., R. El-Zein, C. Bolognesi, and M. Fenech. 2011. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: Evidence from human studies. Mutagenesis 26 (1):93–100. doi:https://doi.org/10.1093/mutage/geq075.
  • Bourdrel, T., M. A. Bind, Y. Béjot, O. Morel, and J. F. Argacha. Cardiovascular effects of air pollution. 2017. Arch Cardiovasc Dis 110:634–42. doi:10.1016/j.acvd.2017.05.003.
  • Brasil, Conselho Nacional de Meio Ambiente (CONAMA). 2018. Resolução no 491, de 19 de novembro de 2018. Dispõe sobre padrões de qualidade do ar. Brazil: Ministério do Meio Ambiente, Brasília.
  • Brito, K. C. T. D., C. T. D. Lemos, J. A. V. Rocha, A. C. Mielli, C. Matzenbacher, and V. M. F. Vargas. 2013. Comparative genotoxicity of airborne particulate matter (PM2.5) using salmonella, plants and mammalian cells. Ecotoxicol. Environ. Saf. 94:14–20. doi:10.1016/j.ecoenv.2013.04.014.
  • Campos, C., M. Cunha, V. Santos, E. de Campos, A. Bonetti, and B. Pereira. 2020. Analysis of genotoxic effects on plants exposed to high traffic volume in urban crossing intersections. Chemosphere 259:259. doi:https://doi.org/10.1016/j.chemosphere.2020.127511.
  • Campos, C. F., E. O. Júnior, H. N. Souto, E. F. Sousa, and B. B. Pereira. 2016. Biomonitoring of the environmental genotoxic potential of emissions from a complex of ceramic industries in Monte Carmelo, Minas Gerais, Brazil, using Tradescantia pallida. J. Toxicol. Environ. Health Part A 79 (3):123–28. doi:10.1080/15287394.2015.1118714.
  • Carvalho, R., M. Carneiro, F. Barbosa, B. Batista, J. Simonetti, S. Amantea, and C. Rhoden. 2018. The impact of occupational exposure to traffic-related air pollution among professional motorcyclists from Porto Alegre, Brazil, and its association with genetic and oxidative damage. Environ. Sci. Pollut. Res 25 (19):18620–31. doi:10.1007/s11356-018-2007-1.
  • Carvalho-Oliveira, R., L. Amato-Lourenco, T. Moreira, D. Silva, B. Vieira, T. Mauad, M. Saiki, and P. Saldiva. 2017. Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates. Environ Int 99:161–69. doi:10.1016/j.envint.2016.09.008.
  • Carvalho-Oliveira, R., R. Pozo, D. Lobo, A. Lichtenfels, H. Martins-Junior, J. Bustilho, M. Salki, I. Sato, and P. Saldiva. 2005. Diesel emissions significantly influence composition and mutagenicity of ambient particles: A case study in São Paulo, Brazil. Environ. Res. 98 (1):1–7. doi:10.1016/j.envres.2004.05.007.
  • Cassanego, M., M. Sasamori, C. Petry, and A. Droste. 2015. Biomonitoring the genotoxic potential of the air on Tradescantia pallida var. purpurea under climatic conditions in the Sinos River basin, Rio Grande do Sul, Brazil. Braz. J. Biol. 75:S79–87. doi:10.1590/1519-6984.05514.
  • Christiani, D. C. 2021. Ambient air pollution and lung cancer: Nature and nurture. Am. J. Respir. Crit. Care Med. 204:752–53. doi:10.1164/rccm.202107-1576ED.
  • Claxton, L. D., P. P. Matthews, and S. H. Warren. 2004. The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat. Res. 567 (2–3):347–99. doi:10.1016/j.mrrev.2004.08.002.
  • Claxton, L., and G. Woodall. 2007. A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat. Res.-Rev. 636:36–94. doi:10.1016/j.mrrev.2007.01.001.
  • Cohen, A. J., H. Ross Anderson, B. Ostro, K. D. Pandey, M. Krzyzanowski, N. Künzli, K. Gutschmidt, A. Pope, I. Romieu, J. M. Samet, et al. 2005. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health Part A 68:1301–07. doi:10.1080/15287390590936166.
  • Collins, A., G. Koppen, V. Valdiglesias, M. Dusinska, M. Kruszewski, P. Møller, E. Rojas, A. Dhawan, I. Benzie, E. Coskun, et al. 2014. The comet assay as a tool for human biomonitoring studies: The ComNet Project. Mutat. Res. 759:27–39. doi:10.1016/j.mrrev.2013.10.001.
  • Coronas, M. V., R. C. Horn, A. Ducatti, J. V. Rocha, and V. M. F. Vargas. 2008. Mutagenic activity of airborne particulate matter in a petrochemical industrial area. Mutat. Res. Toxicol. Environ. Mutagen 650 (2):196–201. doi:https://doi.org/10.1016/j.mrgentox.2007.12.002.
  • Coronas, M. V., T. S. Pereira, J. A. V. Rocha, A. T. Lemos, J. M. G. Fachel, D. M. F. Salvadori, and V. M. F. Vargas. 2009. Genetic biomonitoring of an urban population exposed to mutagenic airborne pollutants. Environ Int 35:1023–29. doi:10.1016/j.envint.2009.05.001.
  • Coronas, M. V., J. A. Vaz Rocha, D. M. Favero Salvadori, and V. M. Ferrão Vargas. 2016. Evaluation of area contaminated by wood treatment activities: Genetic markers in the environment and in the child population. Chemosphere 144:1207–15. doi:10.1016/j.chemosphere.2015.09.084.
  • Costa, G., and A. Droste. 2012. Genotoxicity on Tradescantia pallida var. purpurea plants exposed to urban and rural environments in the metropolitan area of Porto Alegre, southern Brazil. Braz. J. Biol. 72 (4):801–06. doi:10.1590/S1519-69842012000500004.
  • Costa, S., J. Ferreira, C. Silveira, C. Costa, D. Lopes, H. Relvas, C. Borrego, P. Roebeling, A. I. Miranda, and J. P. Teixeira. 2014. Integrating health on air quality assessment—Review report on health risks of two major European outdoor air pollutants: PM and NO 2. J. Toxicol. Environ. Health B 17 (6):307–40. doi:10.1080/10937404.2014.946164.
  • Crispim, B., J. Vaini, A. Grisolia, T. Teixeira, R. Mussury, and L. Seno. 2012. Biomonitoring the genotoxic effects of pollutants on Tradescantia pallida (rose) D.R. Hunt in Dourados, Brazil. Environ. Sci. Pollut. Res 19 (3):718–23. doi:10.1007/s11356-011-0612-3.
  • da Costa, G., C. Petry, and A. Droste. 2016. Active versus passive biomonitoring of air quality: Genetic damage and bioaccumulation of trace elements in flower buds of Tradescantia pallida var. purpurea. Purpurea. Water Air Soil Pollut. 227 (7):1–12. doi:10.1007/s11270-016-2923-y.
  • da Silva, V., M. Andrade, S. Claudio, V. Yujra, M. Alpire, J. Dos Santos, P. Cury, and D. Ribeiro. 2018. Genomic instability in buccal mucosal cells of municipal street sweepers as evaluated by micronucleus test. Anticancer Res. 38:3123–26. doi:10.21873/anticanres.12573.
  • da Silva, K., F. Duarte, J. Matias, S. Dias, E. Duarte, C. Soares, J. Hoelzemann, and M. Galvao. 2019. Physico-chemical properties and genotoxic effects of air particulate matter collected from a complex of ceramic industries. Atmos Pollut Res 10 (2):597–607. doi:10.1016/j.apr.2018.11.001.
  • da Silva Júnior, F. M. R., P. F. Silva, E. M. Garcia, R. D. Klein, G. Peraza-Cardoso, P. R. Baisch, V. M. F. Vargas, and A. L. Muccillo-Baisch. 2013. Toxic effects of the ingestion of water-soluble elements found in soil under the atmospheric influence of an industrial complex. Environ Geochem Health 35:317–31. doi:10.1007/s10653-012-9496-5.
  • de Andrade, S., S. Varella, G. Pereira, G. Zocolo, M. de Marchi, and E. Varanda. 2011. Mutagenic activity of airborne particulate matter (PM10) in a sugarcane farming area (Araraquara city, southeast Brazil). Environ. Res. 111 (4):545–50. doi:10.1016/j.envres.2011.03.004.
  • de Lemos, A. T., and V. M. F. Vargas. 2013. Genotoxicity of airborne particulate matter as a tool to prevent the effects of environmental pollution on health. In Air pollution: Sources, prevention and health effects, ed. R. Seith, pp. 65–84, New York: Nova Publisher.
  • de Martinis, B. S., Y. Kado N, L. R. F. de Carvalho, R. A. Okamoto, and L. A. Gundel. 1999. Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil. Mutat. Res. Toxicol. Environ. Mutagen 446:83–94. doi:10.1016/S1383-5718(99)00151-5.
  • de Oliveira, B. F. A., A. P. Chacra, T. S. Frauches, A. Vallochi, and S. Hacon. 2014. A curated review of recent literature of biomarkers used for assessing air pollution exposures and effects in humans. J. Toxicol. Environ. Health B 17 (7–8):369–410. doi:10.1080/10937404.2014.976893.
  • de Oliveira, A., T. de Oliveira, M. Dias, M. Medeiros, P. Di Mascio, M. Veras, M. Lemos, T. Marcourakis, P. Saldiva, and A. Loureiro. 2018. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from Sao Paulo city, Brazil. Part Fibre Toxicol 15. doi:10.1186/s12989-018-0276-y.
  • de Rainho, C., S. Correa, J. Mazzei, C. Aiub, and I. Felzenszwalb. 2013. Genotoxicity of polycyclic aromatic hydrocarbons and nitro-Dderived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil). Biomed. Res. Int. 2013:1–9. 2013. doi:10.1155/2013/765352.
  • de Santana, S., C. Vercosa, I. Castro, E. de Amorim, A. da Silva, T. Bastos, L. Neto, T. dos Santos, E. De Franca, and C. Rohde. 2018. Drosophila melanogaster as model organism for monitoring and analyzing genotoxicity associated with city air pollution. Environ. Sci. Pollut. Res 25 (32):32409–17. doi:10.1007/s11356-018-3186-5.
  • Dihl, R. R., C. G. A. da Silva, V. S. D. Amaral, M. L. Reguly, and H. H. R. de Andrade. 2008. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the drosophila wing-spot test. Environ. Pollut. 151 (1):47–52. doi:10.1016/j.envpol.2007.03.008.
  • Domingues, E., G. Silva, A. Oliveira, L. Mota, V. Santos, E. de Campos, and B. Pereira. 2018. Genotoxic effects following exposure to air pollution in street vendors from a high-traffic urban area. Environ. Monit. Assess. 190 (4):215. doi:10.1007/s10661-018-6598-2.
  • Ducatti, A., and V. M. F. Vargas. 2003. Mutagenic activity of airborne particulate matter as an indicative measure of atmospheric pollution. Mutat. Res. Toxicol. Environ. Mutagen 540 (1):67–77. doi:10.1016/S1383-5718(03)00170-0.
  • Fenech, M. 2000. The in vitro micronucleus technique. Mutat. Res. Mol. Mech. Mutagen 455 (1–2):81–95. doi:10.1016/S0027-5107(00)00065-8.
  • Fenech, M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc 2 (5):1084–104. doi:10.1038/nprot.2007.77.
  • Fenech, M., N. Holland, E. Zeiger, W. P. Chang, S. Burgaz, P. Thomas, C. Bolognesi, S. Knasmueller, M. Kirsch-Volders, and S. Bonassi. 2011. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells–past, present and future. Mutagenesis 26:239–45. doi:10.1093/mutage/geq051.
  • Feng, S., D. Gao, F. Liao, F. Zhou, and W. Xinming. 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 128:67–74. doi:10.1016/j.ecoenv.2016.01.030.
  • Ferreira, M., G. Rodrigues, M. Domingos, and P. Saldiva. 2003. In situ monitoring of mutagenicity of air pollutants in Sao Paulo City using Tradescantia-SHM bioassay. Braz. Arch. Biol. Technol 46:253–58. doi:10.1590/S1516-89132003000200017.
  • Fleck, A., M. Moresco, and C. Rhoden. 2016. Assessing the genotoxicity of traffic-related air pollutants by means of plant biomonitoring in cities of a Brazilian metropolitan area crossed by a major highway. Atmos Pollut Res 7 (3):488–93. doi:10.1016/j.apr.2015.12.002.
  • Fleck, A., M. Vieira, S. Amantea, and C. Rhoden. 2014. A comparison of the human buccal cell assay and the pollen abortion assay in assessing genotoxicity in an urban-rural gradient. Int J Environ Res Public Health 11:8825–38. doi:10.3390/ijerph110908825.
  • Galvão, M., J. de Queiroz, E. Duarte, J. Hoelzemann, P. de Andre, P. Saldiva, J. Menezes, and S. de Medeiros. 2017. Characterization of the particulate matter and relationship between buccal micronucleus and urinary 1-hydroxypyrene levels among cashew nut roasting workers. Environ. Pollut. 220:659–71. doi:10.1016/j.envpol.2016.10.024.
  • Gladson, L. A., K. R. Cromar, M. Ghazipura, K. E. Knowland, C. A. Keller, and B. Duncan. 2022. Communicating respiratory health risk among children using a global air quality index. Environ Int 159:107023. doi:10.1016/j.envint.2021.107023.
  • Glencross, D. A., T. R. Hoa, N. Camiña, C. M. Hawrylowicz, and P. E. Pfeffer. 2020. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 151:56–68. doi:10.1016/j.freeradbiomed.2020.01.179.
  • Goncalves, V., P. Ribeiro, C. Oliveira, L. Pires, C. Baesse, L. Paniago, V. Toletino, and C. de Melo. 2020. Effects of urban proximity and the occurrence of erythroplastids in Antilophia galeata. Environ. Sci. Pollut. Res 27:44650–55. doi:10.1007/s11356-020-10057-y.
  • Guimaraes, E., M. Domingos, E. Alves, N. Caldini, D. Lobo, A. Lichtenfels, and P. Saldiva. 2000. Detection of the genotoxicity of air pollutants in and around the city of São Paulo (Brazil) with the Tradescantia-micronucleus (Trad-MCN) assay. Environ. Exp. Bot. 44 (1):1–8. doi:10.1016/S0098-8472(00)00050-2.
  • Guimaraes, E., M. Macchione, D. Lobo, M. Domingos, and P. Saldiva. 2004. Evaluation of the mutagenic potential of urban air pollution in São Paulo, Southeastern Brazil, using the Tradescantia stamen-hair assay. Environ. Toxicol. 19 (6):578–84. doi:10.1002/tox.20065.
  • Gu, X., L. Wanga, W. Zhuang, and L. Han. 2018. Reduction of wheat photosynthesis by fine particulate (PM2.5) pollution over the North China Plain. Int J Environ Health Res 28 (6):635–41. doi:10.1080/09603123.2018.1499881.
  • Hou, K., and X. Xu. 2021. Evaluation of the influence between local meteorology and air quality in Beijing using generalized additive models. Atmosphere 13:24. doi:10.3390/atmos13010024.
  • IARC- International Agency for Research on Cancer. 2016. IARC monographs on the identification of carcinogenic hazards to humans: List of classification. France: World Health Organization.
  • INCA - Instituto Nacional de Câncer José Alencar Gomes da Silva. 2021. Ambiente, trabalho e câncer: Aspectos epidemiológicos, toxicológicos e regulatórios. Rio de Janeiro, Brazil: Ministério da Saúde.
  • Isaevska, E., C. Moccia, F. Asta, F. Cibella, L. Gagliardi, L. Ronfani, F. Rusconi, M. A. Stazi, and L. Richiardi. 2021. Exposure to ambient air pollution in the first 1000 days of life and alterations in the DNA methylome and telomere length in children: A systematic review. Environ. Res. 193:110504. doi:10.1016/j.envres.2020.110504.
  • Kado, N. Y., G. N. Guirguis, C. P. Flessel, R. C. Chan, K. -I. Chang, and J. J. Wesolowski. 1986. Mutagenicity of fine (< 2.5 μm) airborne particles: Diurnal variation in community air determined by a salmonella micro preincubation (microsuspension) procedure. Environ Mutagen 8:53–66. doi:10.1002/em.2860080106.
  • Kado, N. Y., D. Langley, and E. Eisenstadt. 1983. A simple modification of the Salmonella liquid-incubation assay: Increased sensitivity for detecting mutagens in human urine. Mutat. Res. Lett 121:25–32. doi:10.1016/0165-7992(83)90082-9.
  • Kaffer, M., A. Lemos, M. Apel, J. Rocha, S. Martins, and V. Vargas. 2012. Use of bioindicators to evaluate air quality and genotoxic compounds in an urban environment in Southern Brazil. Environ. Pollut. 163:24–31. doi:10.1016/j.envpol.2011.12.006.
  • Krewski, D., and D. Rainham. 2007. Ambient air pollution and population health: Overview. J. Toxicol. Environ. Health Part A 70 (3–4):275–83. doi:10.1080/15287390600884859.
  • Kumar, M., Y. Naohiro, and A. V. Fedulov. 2022. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. J. Toxicol. Environ. Health Part A 85 (6):243–61. doi:10.1080/15287394.2021.2000906.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–71. doi:10.1038/nature15371.
  • Lemos, A. T., M. V. Coronas, J. A. V. Rocha, and V. M. F. Vargas. 2012. Mutagenicity of particulate matter fractions in areas under the impact of urban and industrial activities. Chemosphere 89 (9):1126–34. doi:10.1016/j.chemosphere.2012.05.100.
  • Lemos, A., C. de Lemos, M. Coronas, J. da Rocha, and V. Vargas. 2020. Integrated study of genotoxicity biomarkers in schoolchildren and inhalable particles in areas under petrochemical influence. Environ. Res. 188:109443. doi:10.1016/j.envres.2020.109443.
  • Lemos, A. T., C. T. D. Lemos, A. N. Flores, E. O. Pantoja, J. A. V. Rocha, and V. M. F. Vargas. 2016. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. Chemosphere 159:610–18. doi:10.1016/j.chemosphere.2016.05.087.
  • Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, M. Amann, H. R. Anderson, K. G. Andrews, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 380:2224–60. doi:10.1016/S0140-6736(12)61766-8.
  • Li, R., R. Zhou, and J. Zhang. 2018. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases (review). Oncol Lett 15:7506–14. doi:10.3892/ol.2018.8355.
  • Loomis, D., Y. Grosse, B. Lauby-Secretan, F. E. Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, R. Baan, H. Mattock, and K. Straif. 2013. The carcinogenicity of outdoor air pollution. Lancet Oncol. 14 (13):1262–63. doi:10.1016/S1470-2045(13)70487-X.
  • Ma, T. -H., G. L. Cabrera, R. Chen, B. S. Gill, S. S. Sandhu, A. L. Vandenberg, and M. F. Salamone. 1994. Tradescantia micronucleus bioassay. Mutat. Res. Mol. Mech. Mutagen 310:221–30. doi:10.1016/0027-5107(94)90115-5.
  • Maron, D. M., and B. N. Ames. 1983. Revised methods for the salmonella mutagenicity test. Mutat. Res. Mutagen. Relat. Subj 113:173–215. doi:10.1016/0165-1161(83)90010-9.
  • Marvin, C. H., and L. M. Hewitt. 2007. Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material. Mutat. Res. 636:4–35. doi:10.1016/j.mrrev.2006.05.001.
  • Maselli, B. S., V. Cunha, H. Lim, C. Bergvall, R. Westerholm, K. Dreij, T. Watanabe, A. A. Cardoso, S. A. Pozza, G. A. Umbuzeiro, et al. 2020. Similar polycyclic aromatic hydrocarbon and genotoxicity profiles of atmospheric particulate matter from cities on three different continents. Environ. Mol. Mutagen. 61:560–73. doi:10.1002/em.22377.
  • Mathiarasan, S., and A. Huls. 2021. Impact of environmental injustice on children’s health—interaction between air pollution and socioeconomic status. Int J Environ Res Public Health 18 (2):795. doi:10.3390/ijerph18020795.
  • Matsumoto, K., S. Kodama, K. Sakata, and Y. Watanabe. 2022. Atmospheric deposition fluxes and processes of the water-soluble and water-insoluble organic carbon in central Japan. Atmos. Environ. 271:118913. doi:10.1016/j.atmosenv.2021.118913.
  • Meireles, J., R. Rocha, A. Costa, and E. Cerqueira. 2009. Genotoxic effects of vehicle traffic pollution as evaluated by micronuclei test in tradescantia (Trad-MCN). Mutat. Res.-Genet. Toxicol. Environ. Mutagen 675 (1–2):46–50. doi:10.1016/j.mrgentox.2009.02.005.
  • Mendes, M., C. Santos, A. Dias, and A. Bonetti. 2015. Castor bean (Ricinus communis L.) as a potential environmental bioindicator. Genet. Mol. Res. 14 (4):12880–87. doi:10.4238/2015.October.21.8.
  • Mortelmans, K., and E. Zeiger. 2000. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. Mol. Mech. Mutagen 455 (1–2):29–60. doi:10.1016/S0027-5107(00)00064-6.
  • Mudway, I. S., F. J. Kelly, and S. T. Holgate. 2020. Oxidative stress in air pollution research. Free Radic. Biol. Med. 151:2–6. doi:10.1016/j.freeradbiomed.2020.04.031.
  • Mukherjee, A., and M. Agarwal. 2018. A global perspective of fine particulate matter pollution and its health effects. Rev Environ Contam Toxicol 244:5–51. doi:10.1007/398_2017_3.
  • Oliveira, R., D. Custodio, C. de Rainho, E. Morais, I. Felzenszwalb, S. Correa, D. Azevedo, and G. Arbilla. 2018. Polycyclic aromatic hydrocarbon patterns in the city of Rio de Janeiro. Air Qual Atmos Health 11 (5):581–90. doi:10.1007/s1869-018-0566-4.
  • Orellano, P., J. Reynoso, N. Quaranta, A. Bardach, and A. Ciapponi. 2020. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ Int 142:105876. doi:10.1016/j.envint.2020.105876.
  • Palacio, I. C., S. B. M. Barros, and D. A. Roubicek. 2016. Water-soluble and organic extracts of airborne particulate matter induce micronuclei in human lung epithelial A549 cells. Mutat. Res. Toxicol. Environ. Mutagen 812:1–11. doi:10.1016/j.mrgentox.2016.11.003.
  • Palacio, I., I. Oliveira, R. Franklin, S. Barros, and D. Roubicek. 2016. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies. Chemosphere 158:124–30. doi:10.1016/j.chemosphere.2016.05.058.
  • Pereira, T. S., L. S. Beltrami, J. A. V. Rocha, F. P. Broto, L. R. Comellas, D. M. F. Salvadori, and V. M. F. Vargas. 2013. Toxicogenetic monitoring in urban cities exposed to different airborne contaminants. Ecotoxicol. Environ. Saf. 90:174–82. doi:10.1016/j.ecoenv.2012.12.029.
  • Pereira, B., E. de Campos, E. de Lima, M. Barrozo, and S. Morelli. 2014. Biomonitoring air quality during and after a public transportation strike in the center of Uberlândia, Minas Gerais, Brazil by Tradescantia micronucleus bioassay. Environ. Sci. Pollut. Res 21 (5):3680–85. doi:10.1007/s11356-013-2335-0.
  • Pereira, B., E. de Campos, and S. Morelli. 2013. In situ biomonitoring of the genotoxic effects of vehicular pollution in Uberlandia, Brazil, using a Tradescantia micronucleus assay. Ecotoxicol. Environ. Saf. 87:17–22. doi:10.1016/j.ecoenv.2012.10.003.
  • Pereira, T. S., G. N. Gotor, L. S. Beltrami, C. G. Nolla, J. A. V. Rocha, F. P. Broto, L. R. Comellas, and V. M. F. Vargas. 2010. Salmonella mutagenicity assessment of airborne particulate matter collected from urban areas of Rio Grande do Sul State, Brazil, differing in anthropogenic influences and polycyclic aromatic hydrocarbon levels. Mutat. Res. Toxicol. Environ. Mutagen 702 (1):78–85. doi:10.1016/j.mrgentox.2010.07.003.
  • Pinto, E., C. Soares, C. M. C. M. Couto, and A. Almeida. 2015. Trace elements in ambient air at porto metropolitan area—Checking for compliance with New European Union (Eu) air quality standards. J. Toxicol. Environ. Health Part A 78 (13–14):848–59. doi:10.1080/15287394.2015.1051177.
  • Pohl, H., and H. Abadin. 2008. Chemical mixtures: Evaluation of risk for child-specific exposures in a multi-stressor environment. Toxicol. Appl. Pharmacol. 233 (1):116–25. doi:10.1016/j.taap.2008.01.015.
  • Pope, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287 (9):1132–41. doi:10.1001/jama.287.9.1132.
  • Prieto, A., A. Santos, A. Csipak, C. Caliri, I. Silva, M. Arbex, F. Silva, M. Marchi, A. Cavalheiro, D. Silva, et al. 2012. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil. Toxicol. Appl. Pharmacol. 265 (3):368–72. doi:10.1016/j.taap.2012.09.005.
  • Rainho, C., S. Correa, C. Aiub, and I. Felzenszwalb. 2016. Biomonitoring of tunnel workers exposed to heavy air pollution in Rio de Janeiro, Brazil air qual. Atoms Health 9 (8):881–86. doi:10.1007/s11869-016-0391-6.
  • Rainho, C., S. Correa, J. Mazzei, C. Aiub, and I. Felzenszwalb. 2014. Comparison of the sensitivity of strains of Salmonella enterica serovar Typhimurium in the detection of mutagenicity induced by nitroarenes. Genet. Mol. Res. 13 (2):3667–72. doi:10.4238/2014.May.9.9.
  • Rainho, C., A. Velho, S. Correa, J. Mazzei, C. Aiub, and I. Felzenszwalb. 2013. Prediction of health risk due to polycyclic aromatic hydrocarbons present in urban air in Rio de Janeiro, Brazil. Genet. Mol. Res. 12 (3):3992–4002. doi:10.4238/2013.February.28.6.
  • Rocha, A., L. Candido, J. Pereira, C. Silva, S. da Silva, and R. Mussury. 2018. Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae). Environ. Pollut. 240:440–47. doi:10.1016/j.envpol.2018.04.091.
  • Rocha, A., and R. Mussury. 2020. Green areas in an urban environment minimize the mutagenic effects of polluting gases. Water Air Soil Pollut 231 (12): Article number 574. doi:10.1007/s11270-020-04929-9.
  • Rosenkranz, H. S., and R. Mermelstein. 1980. The salmonella mutagenicity and the E. coli Pol A+/Pol A- repair assays: Evaluation of relevance to carcinogenesis. In The predictive value of in vitro short-term Screening tests in the evaluation of carcinogenicity, G. M. Williams, R. Kroes, H. W. Waaijers, and K. W. van de Poll, pp. 5–26. Amsterdam:Elsevier.
  • Sakhvidi, M. J. Z., E. Lequy, M. Goldberg, and B. Jacquemin. 2020. Air pollution exposure and bladder, kidney and urinary tract cancer risk: A systematic review. Environ. Pollut. 267:115328. doi:10.1016/j.envpol.2020.115328.
  • Santibáñez-Andrade, M., Y. Sánchez-Pérez, Y. I. Chirino, R. Morales-Bárcenas, and C. M. García-Cuellar. 2021. Long non-coding RNA NORAD upregulation induced by airborne particulate matter (PM10) exposure leads to aneuploidy in A549 lung cells. Chemosphere 266:128994. doi:10.1016/j.chemosphere.2020.128994.
  • Sato, M. I. Z., G. U. Valent, C. A. Coimbrão, M. C. L. S. Coelho, P. S. Sanchez, C. D. Alonso, and M. T. Martins. 1995. Mutagenicity of airborne particulate organic material from urban and industrial areas of São Paulo, Brazil. Mutat. Res. Mutagen. Relat. Subj 335 (3):317–30. doi:10.1016/0165-1161(95)00035-6.
  • Savoia, E., M. Domingos, E. Guimaraes, F. Brumati, and P. Saldiva. 2009. Biomonitoring genotoxic risks under the urban weather conditions and polluted atmosphere in Santo André, SP, Brazil, through Trad-MCN bioassay. Ecotoxicol. Environ. Saf. 72 (1):255–60. doi:10.1016/j.ecoenv.2008.03.019.
  • Shahadin, M. S., N. S. Mutalib, M. T. Latif, C. M. Greene, and T. Hassan. 2018. Challenges and future direction of molecular research in air pollution-related lung cancers. Lung Cancer 118:69–75. doi:10.1016/j.lungcan.2018.01.016.
  • Shkirkova, K, K. Lamorie-Foote, M Connor, A. Patel, G. Barisano, Baertsch H, Q Liu, T. E. Morgan, C. Sioutas, and W. J. Siuotas. 2020. Effect of ambient particulate matter on vascular tissue: A review. J. Toxicol. Environ. Health B 23 (7):319–50. doi:10.1080/10937404.2020.1822971.
  • Sidwell, A., S. C. Smith, and C. Roper. 2022. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. J. Toxicol. Environ. Health B 25 (8):422–44. doi:10.1080/10937404.2022.2142345.
  • Silva da Silva, C., J. M. Rossato, J. A. Vaz Rocha, and V. M. F. Vargas. 2015. Characterization of an area of reference for inhalable particulate matter (PM2.5) associated with genetic biomonitoring in children. Mutat. Res. Toxicol. Environ. Mutagen 778:44–55. doi:10.1016/j.mrgentox.2014.11.006.
  • Silveira, H., M. Schmidt-Carrijo, E. Seidel, C. Scapulatempo-Neto, A. Longatto, A. Carvalho, R. Reis, and P. Saldiva. 2013. Emissions generated by sugarcane burning promote genotoxicity in rural workers: A case study in Barretos, Brazil. Environ Health 12. doi:10.1186/1476-069X-12-87.
  • Sisenando, H., S. de Medeiros, P. Artaxo, P. H. Saldiva, and S. de Souza Hacon. 2012. Micronucleus frequency in children exposed to biomass burning in the Brazilian legal Amazon region: A control case study. BMC Oral Health 12:6. doi:10.1186/1472-6831-12-6.
  • Soares, S., H. Bueno-Guimaraes, C. Ferreira, D. Rivero, I. De Castro, M. Garcia, and P. Saldiva. 2003. Urban air pollution induces micronuclei in peripheral erythrocytes of mice in vivo. Environ. Res. 92 (3):191–96. doi:10.1016/S0013-9351(02)00061-0.
  • Souza, M. P., M. Hoeltz, L. Brittes Benitez, Ê. L. Machado, and R. D. C. de Souza Schneider. 2019. Microalgae and clean technologies: A review. CLEAN – Soil, Air, Water 47 (11):1800380. doi:10.1002/clen.201800380.
  • Sposito, J., B. Crispim, R. Mussury, and A. Grisolia. 2015. Genetic instability in plants associated with vehicular traffic and climatic variables. Ecotoxicol. Environ. Saf. 120:445–48. doi:10.1016/j.ecoenv.2015.06.031.
  • Sposito, J., B. Crispim, A. Roman, R. Mussury, J. Pereira, L. Seno, and A. Grisolia. 2017. Evaluation the urban atmospheric conditions in different cities using comet and micronuclei assay in Tradescantia pallida. Chemospere 175:108–13. doi:10.1016/j.chemosphere.2017.01.136.
  • Thomas, P., N. Holland, C. Bolognesi, M. Kirsch-Volders, S. Bonassi, E. Zeiger, S. Knasmueller, and M. Fenech. 2009. Buccal micronucleus cytome assay. Nat Protoc 4 (6):825–37. doi:10.1038/nprot.2009.53.
  • Tice, R. R., E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, Y. Miyamae, E. Rojas, J. -C. Ryu, and Y. F. Sasaki. 2000. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35 (3):206–21. doi:10.1002/(SICI)1098-2280(2000)35:3<206:AID-EM8>3.0.CO;2-J.
  • Turner, M. C., Z. J. Andersen, A. Baccarelli, W. R. Diver, S. M. Gapstur, C. A. Pope, D. Prada, J. Samet, G. Thurston, and A. Cohen. 2020. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin 70 (6):460–79. doi:10.3322/caac.21632.
  • Turner, M. C., D. Krewski, W. R. Diver, C. A. Pope III, R. T. Burnett, M. Jerrett, J. D. Marshall, and S. M. Gapstur. 2017. Ambient air pollution and cancer mortality in the cancer prevention study II. Environ Health Perspec 125 (8):087013. doi:10.1289/EHP1249.
  • Umbuzeiro, G. D., A. Franco, D. Magalhaes, F. de Castro, F. Kummrow, C. Rech, L. de Carvalho, and P. Vasconcellos. 2008. A preliminary characterization of the mutagenicity of atmospheric particulate matter collected during sugar cane harvesting using the salmonella/microsome microsuspension assay. Environ. Mol. Mutagen. 49 (4):249–55. doi:10.1002/em.20378.
  • Umbuzeiro, G. A., A. Franco, M. Martins, F. Kummrow, L. Carvalho, H. Schmeiser, J. Leykauf, M. Stiborova, and L. Claxton. 2008. Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from São Paulo, Brazil. Mutat. Res.-Genet. Toxicol. Environ. Mutagen 652 (1):72–80. doi:10.1016/j.mrgentox.2007.12.007.
  • Umbuzeiro, G., F. Kummrow, D. Morales, D. Alves, H. Lim, I. Jarvis, C. Bergvall, R. Westerholm, U. Stenius, and K. Dreij. 2014. Sensitivity of salmonella YG5161 for detecting PAH-associated mutagenicity in air particulate matter. Environ. Mol. Mutagen. 55 (6):510–17. doi:10.1002/em.21861.
  • Vargas, V. M. F. 2003. Mutagenic activity as a parameter to assess ambient air quality for protection of the environment and human health. Fourth Int. Conf. Environ. Mutagens Human. Population 544 (2–3):313–19. doi:10.1016/j.mrrev.2003.06.020.
  • Vargas, V. M. F., R. C. Horn, R. R. Guidobono, A. B. Mittelstaedt, and I. G. D. Azevedo. 1998. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre, Brazil. Genet. Mol. Biol. 21 (2):247–53. doi:10.1590/S1415-47571998000200013.
  • Vieira, C. S. S., P. A. Nicola, and K. C. A. Bortoleti. 2022. Determination of phytotoxicity and cytogenotoxicity due to exposure to particles originating from sugarcane burning using test systems Lactuca sativa L. and Allium cepa L. J. Toxicol. Environ. Health Part A 85 (14):561–72. doi:10.1080/15287394.2022.2054483.
  • Vinceti, M., C. Malagoli, M. Malavolti, A. Cherubini, G. Maffeis, R. Rodolfi, J. E. Heck, G. Astolfi, E. Calzolari, and F. Nicolini. 2016. Does maternal exposure to benzene and PM10 during pregnancy increase the risk of congenital anomalies? A population-based case-control study. Sci. Total Environ. 541:444–50. doi:10.1016/j.scitotenv.2015.09.051.
  • Vineis, P., and K. Husgafvel-Pursianen. 2005. Air pollution and cancer: Biomarker studies in human populations †. Carcinogenesis 26 (11):1846–55. doi:10.1093/carcin/bgi216.
  • Vormittag, E. D. M., P. A. de Araújo, S. S. R. Cirqueira, H. Wicher Neto, and P. H. N. Saldiva. 2021. Análise do monitoramento da qualidade do ar no Brasil. Estudos Avançados 35 (102):7–30. doi:10.1590/s0103-4014.2021.35102.002.
  • Wang, Y., S. Xu, W. Zhang, Y. Li, N. Wang, X. He, and W. Chen. 2021. Responses of growth, photosynthesis and related physiological characteristics in leaves of Acer ginnala Maxim. to increasing air temperature and/or elevated O3. Plant Biol 23 (1):221–31. Suppl. doi:10.1111/plb.13240.
  • Watanabe, M., M. Ishidate Jr., and T. Nohmi. 1989. A sensitive method for the detection of mutagenic nitroarenes: Construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat. Res. Mutagen. Relat. Subj 216 (4):211–20. doi:10.1016/0165-1161(89)90007-1.
  • Watanabe, M., M. Ishidate Jr., and T. Nohmi. 1990. Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: New derivatives of salmonella typhimurium tester strains possessing elevated O-acetyltransferase levels. Mutat. Res. Mutagen. Relat. Subj 234 (5):337–48. doi:10.1016/0165-1161(90)90044-O.
  • World Health Organization & International Programme on Chemical Safety. 1998. Selected non-heterocyclic polycyclic aromatic hydrocarbons. France: World Health Organization.
  • World Health Organization. Occupational and Environmental Health Team2006. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005: Summary of risk assessment. Lignes Directrices OMS Relat. À Qual. Air Part. Ozone Dioxide Azote Dioxide Soufre Mise À Jour Mond. 2005 Synthèse Lévaluation Risques.
  • World Health Organization (WHO), 2023. Ambient (outdoor) air pollution. Available in: https://www.who.int/news-room/fact-sheets/detail/ambient-outdoor-air-quality-and-health
  • Xing, D. F., C. D. Xu, X. Y. Liao, T. Y. Xing, S. P. Cheng, M. G. Hu, and J. X. Wang. 2019. Spatial association between outdoor air pollution and lung cancer incidence in China. BMC Public Health 19 (1):1377. doi:https://doi.org/10.1186/s12889-019-7740-y.
  • Xue, Y., L. Wang, Y. Zhang, Y. Zhao, and Y. Liu. 2022. Air pollution: A culprit of lung cancer. J. Hazard. Mater. 434:128937. doi:10.1016/j.jhazmat.2022.128937.
  • Yang, B. -Y., Y. Qu, Y. Guo, I. Markevych, J. Heinrich, M. S. Bloom, Z. Bai, L. C. Knibbs, S. Li, G. Chen, et al. 2021. Maternal exposure to ambient air pollution and congenital heart defects in China. Environ Int 153:106548. doi:10.1016/j.envint.2021.106548.
  • Yue, X., and N. Unger. 2018. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 9 (1):5413. doi:10.1038/s41467-018-07921-4.
  • Zani, C., F. Donato, E. Ceretti, R. Pedrazzani, I. Zerbini, U. Gelatti, and D. Feretti. 2021. Genotoxic activity of particulate matter and in vivo tests in children exposed to air pollution. Int J Environ Res Public Health 18 (10):5345. doi:10.3390/ijerph18105345.
  • Zanobetti, A., and A. Peters. 2015. Disentangling interactions between atmospheric pollution and weather. J. J. Epidemiol. Community Health 69 (7):613–15. doi:10.1136/jech-2014-203939.
  • Zhang, Q., S. Sun, X. Sui, L. Ding, M. Yang, C. Li, C. Zhang, X. Zhang, J. Hao, Y. Xu, et al. 2021. Associations between weekly air pollution exposure and congenital heart disease. Sci. Total Environ. 757:143821. doi:10.1016/j.scitotenv.2020.143821.
  • Zhao, N., W. Wu, Y. Feng, F. Yang, T. Han, M. Guo, Q. Ren, W. Li, J. Li, S. Wang, et al. 2021. Polymorphisms in oxidative stress, metabolic detoxification, and immune function genes, maternal exposure to ambient air pollution, and risk of preterm birth in Taiyuan, China. Environ. Res. 194:110659. doi:10.1016/j.envres.2020.110659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.