578
Views
1
CrossRef citations to date
0
Altmetric
Review

Experimental models of chemically induced Parkinson’s disease in zebrafish at the embryonic larval stage: a systematic review

, , , & ORCID Icon

References

  • Abrão, L. C., D. G. Costa-Silva, M. G. dos Santos, M. B. R. Cerqueira, E. Badiale-Furlong, A. L. Muccillo-Baisch, and M. A. Hort. 2022. Toxicity evaluation of traditional and organic yerba mate (Ilex paraguariensis A. St.-Hil.) extracts. J. Toxicol. Environ. Health A 85 (11):461–79. doi:10.1080/15287394.2022.2035873.
  • Acharya, S., B. M. Safaie, P. Wongkongkathep, M. I. Ivanova, A. Attar, F. Klärner, T. Schrader, J. A. Loo, G. Bitan, and L. J. Lapidus. 2014. Molecular basis for preventing α-synuclein aggregation by a molecular tweezer. J. Biol. Chem. 289 (15):10727–37. doi:10.1074/jbc.M113.524520.
  • Amaraneni, M., J. Pang, T. B. Mortuza, S. Muralidhara, B. S. Cummings, C. A. White, C. V. Vorhees, J. Zastre, and J. V. Bruckner. 2017. Brain uptake of deltamethrin in rats as a function of plasma protein binding and blood–brain barrier maturation. NeuroToxicology 62:24–29. doi:10.1016/j.neuro.2017.04.009.
  • Arslan-Ergul, A., E. Begun, E. T. Karoglu, D. O. Halim, and M. M. Adams. 2016. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms. Neuroscience 334:64–75. doi:10.1016/j.neuroscience.2016.07.033.
  • Bailey, J., A. Oliveri, and E. D. Levin. 2013. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res. (Part C) 99 (1):14–23. doi:10.1002/bdrc.21027.
  • Bakthavatsalam, S., S. Das Sharma, M. Sonawane, V. Thirumalai, and A. Datta. 2014. A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity. Dis. Model Mech. 7:1239–51. doi:10.1242/dmm.016683.
  • Barker, R. A., and A. Björklund. 2020. Animal models of Parkinson’s disease: Are they useful or not? J. Parkinsons Dis 10 (4):1335–42. doi:10.3233/JPD-202200.
  • Barlow, B. K., D. A. Cory-Slechta, E. K. Richfield, and M. Thiruchelvam. 2007. The gestational environment and Parkinson’s disease: Evidence for neurodevelopmental origins of a neurodegenerative disorder. Reprod. Toxicol 23 (3):457–70. doi:10.1016/j.reprotox.2007.01.007.
  • Barlow, B. K., D. W. Lee, D. A. Cory-Slechta, and L. A. Opanashuk. 2005. Modulation of antioxidant defense systems by the environmental pesticide maneb in dopaminergic cells. NeuroToxicology 26 (1):63–75. doi:10.1016/j.neuro.2004.07.004.
  • Bashirzade, A. A., K. N. Zabegalov, A. D. Volgin, A. S. Belova, K. A. Demin, M. S. de Abreu, V. Y. Babchenko, K. A. Bashirzade, K. B. Yenkoyan, M. A. Tikhonova, et al. 2022. Modeling neurodegenerative disorders in zebrafish. Neurosci. Biobehav. Rev 138:104679. doi:10.1016/j.neubiorev.2022.104679.
  • Basnet, R. M., D. Zizioli, S. Taweedet, D. Finazzi, and M. Memo. 2019. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7 (1):23. doi:10.3390/biomedicines7010023.
  • Bauer, B., A. Mally, and D. Liedtke. 2021. Zebrafish embryos and larvae as alternative animal models for toxicity testing. Int. J. Mol. Sci 22 (24):13417. doi:10.3390/ijms222413417.
  • Benvenutti, R., M. Marcon, C. G. Reis, L. R. Nery, C. Miguel, A. P. Herrmann, M. R. M. Vianna, and A. Piato. 2018. N-acetylcysteine protects against motor, optomotor and morphological deficits induced by 6-OHDA in zebrafish larvae. PeerJ 6:1–17. doi:10.7717/peerj.4957.
  • Betarbet, R., T. B. Sherer, and J. T. Greenamyre. 2002. Animal models of Parkinson’s disease. BioEssays 24 (4):308–18. doi:10.1002/bies.10067.
  • Blanch, A., F. Balada, and A. Aluja. 2014. Habituation in acoustic startle reflex: Individual differences in personality. Int. J. Psychophysiol 91 (3):232–39. doi:10.1016/j.ijpsycho.2014.01.001.
  • Blandini, F., and M. T. Armentero. 2012. Animal models of Parkinson’s disease. FEBS J. 279 (7):1156–66. doi:10.1111/j.1742-4658.2012.08491.x.
  • Bowman, A. B., G. F. Kwakye, E. Herrero Hernández, and M. Aschner. 2011. Role of manganese in neurodegenerative diseases. J. Trace Elem. Med. Biol 25 (4):191–203. doi:10.1016/j.jtemb.2011.08.144.
  • Bretaud, S., S. Lee, and S. Guo. 2004. Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol. Teratol. 26 (6):857–64. doi:10.1016/j.ntt.2004.06.014.
  • Brooks, A. I., C. A. Chadwick, H. A. Gelbard, D. A. Cory-Slechta, and H. J. Federoff. 1999. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 823 (1–2):1–10. doi:10.1016/S0006-8993(98)01192-5.
  • Cao, F., C. L. Souders 2nd, P. Li, S. Pang, X. Liang, L. Qiu, and C. J. Martyniuk. 2019. Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. Ecotoxicol. Environ. Saf. 170:227–37. doi:10.1016/j.ecoenv.2018.11.110.
  • Cao, Z., M. Su, H. Wang, L. Zhou, Z. Meng, G. Xiong, X. Liao, and H. Lu. 2021. Carboxyl graphene oxide nanoparticles induce neurodevelopmental defects and locomotor disorders in zebrafish larvae. Chemosphere 270:128611. doi:10.1016/j.chemosphere.2020.128611.
  • Cassar, S., I. Adatto, J. L. Freeman, J. T. Gamse, I. Iturria, C. Lawrence, A. Muriana, R. T. Peterson, S. Van Cruchten, and L. I. Zon. 2020. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol. 33 (1):95–118. doi:10.1021/acs.chemrestox.9b0033.
  • Castello, P. R., D. A. Drechsel, and M. Patel. 2007. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J. Biol. Chem. 282 (19):14186–93. doi:10.1074/jbc.M700827200.
  • Chen, Q., N. N. Huang, J. T. Huang, S. Chen, J. Fan, C. Li, and F. K. Xie. 2009. Sodium benzoate exposure downregulates the expression of tyrosine hydroxylase and dopamine transporter in dopaminergic neurons in developing zebrafish. Birth Defects Res. Part B - Dev. Reprod. Toxicol 86 (2):85–91. doi:10.1002/bdrb.20187.
  • Chen, T., C. Li, Y. Li, X. Yi, R. Wang, S. M. Y. Lee, and Y. Zheng. 2017. Small-sized mPEG–PLGA Nanoparticles of Schisantherin a with Sustained Release for Enhanced Brain Uptake and Anti-Parkinsonian Activity. ACS Appl. Mater. Interfaces 9 (11):9516–27. doi:10.1021/acsami.7b01171.
  • Chen, T., Y. Li, C. Li, X. Yi, R. Wang, S. M. Y. Lee, and Y. Zheng. 2017. Pluronic P85/F68 micelles of baicalein could interfere with mitochondria to overcome MRP2-mediated efflux and offer improved anti-parkinsonian activity. Mol. Pharm. 14 (10):3331–42. doi:10.1021/acs.molpharmaceut.7b00374.
  • Chen, Z., C. Yu, I. A. Khan, Y. Tang, S. Liu, and M. Yang. 2020. Toxic effects of different-sized graphene oxide particles on zebrafish embryonic development. Ecotoxicol. Environ. Saf. 197:110608. doi:10.1016/j.ecoenv.2020.110608.
  • Chia, S. J., E. K. Tan, and Y. X. Chao. 2020. Historical perspective: Models of Parkinson’s disease. Int. J. Mol. Sci 21 (7):2464. doi:10.3390/ijms21072464.
  • Choi, T. Y., T. I. Choi, Y. R. Lee, S. K. Choe, and C. H. Kim. 2021. Zebrafish as an animal model for biomedical research. Exp. Mol. Med 53 (3):310–17. doi:10.1038/s12276-021-00571-5.
  • Choi, M. S., T. Nakamura, S. J. Cho, X. Han, E. A. Holland, J. Qu, G. A. Petsko, J. R. Yates, R. C. Liddington, and S. A. Lipton. 2014. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson’s disease models. J. Neurosci 34 (45):15123–31. doi:10.1523/JNEUROSCI.4751-13.2014.
  • Chong, C. M., D. Ma, C. Zhao, R. J. M. Franklin, Z. Y. Zhou, N. Ai, C. Li, H. Yu, T. Hou, F. Sa, et al. 2015. Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models. Free Radic. Biol. Med. 89:1057–66. doi:10.1016/j.freeradbiomed.2015.08.013.
  • Christensen, C., H. Porsteinsson, V. H. Maier, and K. E. Karlsson. 2020. Multi-parameter behavioral phenotyping of the MPP+ model of Parkinson’s disease in zebrafish. Front Behav. Neurosci. 14:1–14. doi:10.3389/fnbeh.2020.623924.
  • Cicchetti, F., J. Drouin-Ouellet, and R. E. Gross. 2009. Environmental toxins and Parkinson’s disease: What have we learned from pesticide-induced animal models? Trends Pharmacol. Sci. 30 (9):475–83. doi:10.1016/j.tips.2009.06.005.
  • Cleal, M., B. D. Fontana, M. Double, R. Mezabrovschi, L. Parcell, E. Redhead, and M. O. Parker. 2021. Dopaminergic modulation of working memory and cognitive flexibility in a zebrafish model of aging-related cognitive decline. Neurobiol. Aging 102:1–16. doi:10.1016/j.neurobiolaging.2021.02.005.
  • Cochemé, H. M., and M. P. Murphy. 2008. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283 (4):1786–98. doi:10.1074/jbc.M708597200.
  • Criswell, S. R., J. S. Perlmutter, J. L. Huang, N. Golchin, H. P. Flores, A. Hobson, M. Aschner, K. M. Erikson, H. Checkoway, and B. A. Racette. 2012. Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders. Occup. Environ. Med. 69 (6):437–43. doi:10.1136/oemed-2011-100119.
  • Cronin, A., and M. Grealy. 2017. Neuroprotective and neuro-restorative effects of minocycline and rasagiline in a zebrafish 6-hydroxydopamine model of Parkinson’s Disease. Neuroscience 367:34–46. doi:10.1016/j.neuroscience.2017.10.018.
  • Crossley, N. A., E. Sena, J. Goehler, J. Horn, B. Van Der Worp, P. M. W. Bath, M. MacLeod, and U. Dirnagl. 2008. Empirical evidence of bias in the design of experimental stroke studies: A metaepidemiologic approach. Stroke 39 (3):929–34. doi:10.1161/STROKEAHA.107.498725.
  • Cui, G., L. Shan, Y. Chen, H. Zhou, Y. Wang, and S. M. Y. Lee. 2016. A new danshensu derivative protects against 6-hydroxydopamine-induced neurotoxicity in vitro and in vivo. Am. J. Chin. Med. 44 (07):1349–61. doi:10.1142/S0192415X16500750.
  • Decourt, M., H. Jiménezurbieta, M. Benoit-Marand, and P. O. Fernagut. 2021. Neuropsychiatric and cognitive deficits in Parkinson’s disease and their modeling in rodents. Biomedicines 9 (6):684. doi:10.3390/biomedicines9060684.
  • De Lau, L. M. L., P. C. L. M. Giesbergen, M. C. De Rijk, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler. 2004. Incidence of parkinsonism and Parkinson disease in a general population: The Rotterdam study. Neurology 63:1240–44. doi:10.1212/01.WNL.0000140706.52798.BE.
  • Díaz-Casado, M. E., E. Lima, J. A. García, C. Doerrier, P. Aranda, R. K. A. Sayed, A. Guerra-Librero, G. Escames, L. C. López, and D. Acuña-Castroviejo. 2016. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/pink1/dj-1/MUL1 network. J. Pineal Res. 61 (1):96–107. doi:10.1111/jpi.12332.
  • Díaz-Casado, M. E., I. Rusanova, P. Aranda, M. Fernández-Ortiz, R. K. A. Sayed, B. I. Fernández-Gil, A. Hidalgo-Gutiérrez, G. Escames, L. C. López, and D. Acuña-Castroviejo. 2018. In vivo determination of mitochondrial respiration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated zebrafish reveals the efficacy of melatonin in restoring mitochondrial normalcy. Zebrafish 15 (1):15–26. doi:10.1089/zeb.2017.1479.
  • Ding, L., W. Nan, X. Zhu, X. Li, L. Zhou, H. Chen, L.Yu, F. Ullah Khan, H. Zhong and X. Shi. (2019). Rapamycin and FK506 derivative TH2849 could ameliorate neurodegenerative diseases through autophagy with low immunosuppressive effect. CNS Neurosci. Ther. 25 (4):452–464. doi:10.1111/cns.13062.
  • Dipp, V. R., S. Valles, H. Ortiz-Kerbertt, J. V. Suarez, and U. Bardullas. 2018. Neurobehavioral alterations in zebrafish due to long-term exposure to low doses of inorganic arsenic. Zebrafish 15:575–85. doi:10.1089/zeb.2018.1627.
  • Dixon, S. J., K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, D. N. Patel, A. J. Bauer, A. M. Cantley, W. S. Yang, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149,(5):1060–72. doi:10.1016/j.cell.2012.03.042.
  • Dong, H., H. Wu, C. Bai, K. Ye, L. Mao, Y. Lei, Y. Liu, H. Xu, J. Lin, J. Zhu, et al. 2022. Transient MPTP exposure at a sensitive developmental window altered gut microbiome and led to male-biased motor and social behavioral deficits in adult zebrafish. NeuroToxicology 91:360–68. doi:10.1016/j.neuro.2022.06.008.
  • Doyle, J. M., and R. P. Croll. 2022. A critical review of zebrafish models of Parkinson’s disease. 2022. Front Pharmacol. 13:835827. doi:10.3389/fphar.2022.835827.
  • Drummond, N. J., N. O. Davies, J. E. Lovett, M. R. Miller, G. Cook, T. Becker, C. G. Becker, D. B. McPhail, and T. Kunath. 2017. A synthetic cell permeable antioxidant protects neurons against acute oxidative stress. Sci. Rep 7 (1):1–12. doi:10.1038/s41598-017-12072-5.
  • Duavy, S. M., A. Ecker, G. T. Salazar, J. Loreto, J. G. M. Costa, and N. Vargas Barbosa. 2019. Pequi enriched diets protect Drosophila melanogaster against paraquat-induced locomotor deficits and oxidative stress. J. Toxicol. Environ. Health. A 82 (11):664–77. doi:10.1080/15287394.2019.1642277.
  • Dun, Y., G. Li, Y. Yang, Z. Xiong, M. Feng, M. Wang, Y. Zhang, J. Xiang, and R. Ma. 2012. Inhibition of the canonical wnt pathway by dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats. Neurosci. Lett. 525 (2):83–88. doi:10.1016/j.neulet.2012.07.030.
  • du Sert, P. N., V. Hurst, A. Ahluwalia, S. Alam, T. A. M, M. Baker, W. J. Browne, A. Clark, I. C. Cuthill, U. Dirnagl, et al. 2020. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol., 18,(7):e3000410. doi:10.1371/journal.pbio.3000410.
  • Espadas, I., S. Darmopil, E. Vergaño-Vera, O. Ortiz, I. Oliva, C. Vicario-Abejón, E. D. Martín, and R. Moratalla. 2012. L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: Insights into regulation and function. Neurobiol. Dis. 48 (3):271–81. doi:10.1016/j.nbd.2012.07.012.
  • Farrell, T. C., C. L. Cario, C. Milanese, A. Vogt, J. Jeong and E. A. Burton. 2011. Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models. Neurobiol. Dis. 44:9–18. doi:10.1016/j.nbd.2011.05.016.
  • Feng, C. W., N. F. Chen, Z. H. Wen, W. Y. Yang, H. M. Kuo, P. J. Sung, J. H. Su, S. Y. Cheng, and W. F. Chen. 2019. In vitro and in vivo neuroprotective effects of stellettin b through anti-apoptosis and the nrf2/ho-1 pathway. Mar. Drugs 17 (6):315. doi:10.3390/md17060315.
  • Feng, C. W., H. C. Hung, S. Y. Huang, C. H. Chen, Y. R. Chen, C. Y. Chen, S. N. Yang, H. M. D. Wang, P. J. Sung, J. H. Sheu, et al. 2016. Neuroprotective effect of the marine-derived compound 11-dehydrosinulariolide through DJ-1-related pathway in in vitro and in vivo models of Parkinson’s disease. Mar. Drugs, 14,(10):1–18. doi:10.3390/md14100187
  • Feng, C. W., Z. H. Wen, S. Y. Huang, H. C. Hung, C. H. Chen, S. N. Yang, N. F. Chen, H. M. Wang, C. Der Hsiao, and W. F. Chen. 2014. Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio Rerio) larvae. Zebrafish 11 (3):227–39. doi:10.1089/zeb.2013.0950.
  • Filippi, A., T. Mueller, and W. Driever. 2014. Vglut2 and Gad Expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain. J. Comp. Neurol. 522:2019–37. doi:10.1002/cne.23524.
  • Fleming, A., A. Diekmann, and P. Goldsmith. 2013. Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS One 8 (10):e77548. doi:10.1371/journal.pone.0077548.
  • Franco-Iborra, S., M. Vila, and C. Perier. 2016. The Parkinson disease mitochondrial hypothesis: Where are we at? Neurosci. 22 (3):266–77. doi:10.1177/1073858415574600.
  • Freire, C., and S. Koifman. 2012. Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. NeuroToxicology 33 (5):947–71. doi:10.1016/j.neuro.2012.05.011.
  • Friedrich, R. W., G. A. Jacobson, and P. Zhu. 2010. Circuit neuroscience in zebrafish. Curr. Bio 20 (8):R371–81. doi:10.1016/j.cub.2010.02.039.
  • Geier, M. C., D. J. Minick, L. Truong, S. Tilton, P. Pande, K. A. Anderson, J. Teeguardan, and R. L. Tanguay. 2018. Systematic developmental neurotoxicity assessment of a representative pah superfund mixture using zebrafish. Toxicol. Appl. Pharmacol. 354:115–25. doi:10.1016/j.taap.2018.03.029.
  • Gerlai, R. 2020. Evolutionary conservation, translational relevance and cognitive function: The future of zebrafish in behavioral neuroscience. Neurosci. Biobehav. Rev 116:426–35. doi:10.1016/j.neubiorev.2020.07.009.
  • Gonzalezpolo, R., G. Soler, A. Rodriguezmartin, J. Moran, and J. Fuentes. 2004. Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants. Cell Biol. Int. 28 (5):373–80. doi:10.1016/j.cellbi.2004.03.005.
  • Grandi, L. C., G. Di Giovanni, and S. Galati. 2018. Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. 2018. J. Neurosci. Methods 308:205–18. doi:10.1016/j.jneumeth.2018.08.012.
  • Gu, J., M. Guo, C. Huang, X. Wang, Y. Zhu, L. Wang, Z. Wang, L. Zhou, D. Fan, L. Shi, et al. 2021. Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal growth in zebrafish (Danio rerio) larvae. Sci. Total Environ. 754:142315. doi:10.1016/j.scitotenv.2020.142315.
  • Gu, J., M. Guo, X. Yin, C. Huang, L. Qian, L. Zhou, Z. Wang, L. Wang, L. Shi, and G. Ji. 2022. A systematic comparison of neurotoxicity of bisphenol a and its derivatives in zebrafish. Sci. Total Environ. 805:150210. doi:10.1016/j.scitotenv.2021.150210.
  • Guo, Z., H. Miyoshi, T. Komyoji, T. Haga, and T. Fujita. 1991. Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochim. Biophy. Acta - Bioenerg 1056 (1):89–92. doi:10.1016/S0005-2728(05)80077-5.
  • Guo, S., S. W. Wilson, S. Cooke, A. B. Chitnis, W. Driever, and A. Rosenthal. 1999. Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev. Biol. 208 (2):473–87. doi:10.1006/dbio.1999.9204.
  • Guo, B., D. Xu, H. Duan, J. Du, Z. Zhang, S. W. Y. Lee, and Y. Wang. 2014. Therapeutic effects of multifunctional tetramethylpyrazine nitrone on models of Parkinson’s disease in vitro and in vivo. Biol. Pharm. Bull. 37 (2):274–85. doi:10.1248/bpb.b13-00743.
  • Haces, M. L., T. Montiel, and L. Massieu. 2010. Selective vulnerability of brain regions to oxidative stress in a non-coma model of insulin-induced hypoglycemia. Neuroscience 165 (1):28–38. doi:10.1016/j.neuroscience.2009.10.003.
  • Ham, A., D. W. Kim, K. H. Kim, S. J. Lee, K. B. Oh, J. Shin, and W. Mar. 2013. Reynosin protects against neuronal toxicity in dopamine-induced SH-SY5Y cells and 6-hydroxydopamine-lesioned rats as models of Parkinson’s disease: Reciprocal up-regulation of E6-AP and down-regulation of α-synuclein. Brain Res. 1524:54–61. doi:10.1016/j.brainres.2013.05.036.
  • Heinz, S., A. Freyberger, B. Lawrenz, L. Schladt, G. Schmuck, and H. Ellinger-Ziegelbauer. 2017. Mechanistic investigations of the mitochondrial complex i inhibitor rotenone in the context of pharmacological and safety evaluation. Sci. Rep. 7 (1):45465. doi:10.1038/srep45465.
  • Horzmann, K. A., and J. L. Freeman. 2018. Making waves: New developments in toxicology with the zebrafish. Toxicol. Sci 163 (1):5–12. doi:10.1093/toxsci/kfy044.
  • Hsu, C. H., Z. H. Wen, C. S. Lin, and C. Chakraborty. 2007. The zebrafish model: Use in studying cellular mechanisms for a spectrum of clinical disease entities. Current Neurovas. Res, 4 (2):111–20. doi:10.2174/156720207780637234.
  • Huang, X., Y. Liang, Y. Qing, D. Chen, and N. Shi. 2019. Proteasome inhibition by MG-132 protects against deltamethrin-induced apoptosis in rat hippocampus. Life Sci. 220:76–83. doi:10.1016/j.lfs.2019.01.041.
  • Hu, Q., F. Guo, F. Zhao, and Z. Fu. 2017. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. Chemosphere 173:373–79. doi:10.1016/j.chemosphere.2017.01.063.
  • Hu, Q., and G. Wang. 2016. Mitochondrial dysfunction in Parkinson’s disease. Transl. Neurodegener 5 (1):14. doi:10.1186/s40035-016-0060-6.
  • Ibrahim, A. M., L. Chauhan, A. Bhardwaj, A. Sharma, F. Fayaz, B. Kumar, M. Alhashmi, N. AlHajri, M. S. Alam, and F. H. Pottoo. 2022. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines 10 (5):1143. doi:10.3390/biomedicines10051143.
  • Ijomone, O. M., O. M. Aluko, C. O. A. Okoh, A. C. Martins, and M. Aschner. 2019. Role for calcium signaling in manganese neurotoxicity. J. Trace Elem. Med. Biol 56:146–55. doi:10.1016/j.jtemb.2019.08.006.
  • Jeong, J. Y., H. B. Kwon, J. C. Ahn, D. Kang, S. H. Kwon, J. A. Park, and K. W. Kim. 2008. Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res. Bull. 75 (5):619–28. doi:10.1016/j.brainresbull.2007.10.043.
  • Joseph, T. P., N. Jagadeesan, L. Y. Sai, S. L. Lin, S. Sahu, and M. Schachner. 2020. Adhesion Molecule L1 Agonist mimetics protect against the pesticide paraquat-induced locomotor deficits and biochemical alterations in zebrafish. Front. Neurosci. 14:1–15. doi:10.3389/fnins.2020.00458.
  • Kacew, S., and A. W. Hayes. 2020. Absence of neurotoxicity and lack of neurobehavioral consequences due to exposure to tetrabromobisphenol a (TBBPA) exposure in humans, animals and zebrafish. Arch. Toxicol. 94 (1):59–66. doi:10.1007/s00204-019-02627-y.
  • Kalueff, A. V., D. J. Echevarria, and A. M. Stewart. 2014. Gaining translational momentum: More zebrafish models for neuroscience research. Prog. Neuropsychopharmacol. Biol. Psychiatry 55:1–6. doi:10.1016/j.pnpbp.2014.01.022.
  • Kalueff, A. V., M. Gebhardt, A. M. Stewart, J. M. Cachat, M. Brimmer, J. S. Chawla, C. Craddock, E. J. Kyzar, A. Roth, S. Landsman, et al. 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10,(1):70–86. doi:https://doi.org/10.1089/zeb.2012.0861
  • Kalueff, A. V., A. M. Stewart, and R. Gerlai. 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35 (2):63–75. doi:10.1016/j.tips.2013.12.002.
  • Kao, C. J., W. F. Chen, B. L. Guo, C. W. Feng, H. C. Hung, W. Y. Yang, C. S. Sung, K. H. Tsui, H. Chu, N. F. Chen, et al. 2017. The 1-tosylpentan-3-one protects against 6-hydroxydopamine-induced neurotoxicity. Int. J. Mol. Sci 18 (5):1–25. doi:10.3390/ijms18051096.
  • Kawakami, F., N. Shimada, E. Ohta, G. Kagiya, R. Kawashima, T. Maekawa, H. Maruyama, and T. Ichikawa. 2014. Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β. FEBS J. 281:3–13. doi:10.1111/febs.12579.
  • Kesh, S., R. R. Kannan, and A. Balakrishnan. 2021a. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 239:108893. doi:10.1016/j.cbpc.2020.108893.
  • Kesh, S., R. R. Kannan, K. Sivaji, and A. Balakrishnan. 2021b. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci. Lett. 740:135426. doi:10.1016/j.neulet.2020.135426.
  • Khalili, A., E. van Wijngaarden, G. R. Zoidl, and P. Rezai. 2020. Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae. Integr. Bio: Quant. Biosci. Nano. Macro 12 (8):211–20. doi:10.1093/intbio/zyaa016.
  • Kim, S. S., K. S. Hwang, H. Kan, J. Y. Yang, Y. Son, D. S. Shin, B. H. Lee, C. H. Chae, and M. A. Bae. 2022. Neurotoxicological profiling of paraquat in zebrafish model. Neurochem. Res. 47 (8):2294–306. doi:10.1007/s11064-022-03615-y.
  • Kin, K., T. Yasuhara, M. Kameda, and I. Date. 2019. Animal models for Parkinson’s disease research: Trends in the 2000s. Int. J. Mol . Sci. 20 (21):5402. doi:10.3390/ijms20215402.
  • Kozioł, E., K. Skalicka-Woźniak, A. Michalak, K. Kaszubska, and B. Budzyńska. 2021. Xanthotoxin reverses Parkinson’s disease-like symptoms in zebrafish larvae and mice models: A comparative study. Pharmacol. Rep. 73 (1):122–29. doi:10.1007/s43440-020-00136-9.
  • Kumar, S., R. Meena, and R. Paulraj. 2016. Role of macrophage (M1 and M2) in titanium-dioxide nanoparticle-induced oxidative stress and inflammatory response in rat. Appl. Biochem. Biotechnol. 180 (7):1257–75. doi:10.1007/s12010-016-2165-x.
  • Lam, C. S., V. Korzh, and U. Strahle. 2005. Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur. J. Neurosci. 21 (6):1758–62. doi:10.1111/j.1460-9568.2005.03988.x.
  • Leandro, L. P., R. Siqueira de Mello, D. G. da Costa-Silva, M. E. M. Nunes, A. Lopes, I. K. Martins, T. Posser, and J. L. Franco. 2021. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. Environ. Pollut. 268:115783. doi:10.1016/j.envpol.2020.115783.
  • Li, S., H. Chen, X. Yang, D. Bardelang, I. W. Wyman, J. Wan, S. M. Y. Lee, and R. Wang. 2015. Supramolecular inhibition of neurodegeneration by a synthetic receptor. ACS Med. Chem. Lett. 6 (12):1174–78. doi:10.1021/acsmedchemlett.5b00372.
  • Li, C., B. Tang, Y. Feng, F. Tang, M. Pui-Man Hoi, Z. Su, and S. Ming-Yuen Lee. 2018a. Pinostrobin exerts neuroprotective actions in neurotoxin-induced Parkinson’s disease models through Nrf2 induction. J. Agric. Food Chem. 66 (31):8307–18. doi:10.1021/acs.jafc.8b02607.
  • Liu, X., N. Yamada, and T. Osawa. 2014. Amide-type adduct of dopamine-plausible cause of Parkinson’s disease. Subcell. Bioche 77:49–60.
  • Liu, Y., Y. Zhao, B. Sun, and C. Chen. 2013. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46 (3):702–13. doi:10.1021/ar300028m.
  • Li, M., F. Zhou, T. Xu, H. Song, and B. Lu. 2018b. Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food. Che. Toxicol 119:6–13. doi:10.1016/j.fct.2018.06.018.
  • Lulla, A., L. Barnhill, G. Bitan, M. I. Ivanova, B. Nguyen, K. O’donnell, M. C. Stahl, C. Yamashiro, F. -G. Klärner, T. Schrader, et al. 2016. Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ. Health Perspect., 124,(11):1766–75. doi:10.1289/EHP141.
  • Ma, Q. 2013. Role of NrF2 in oxidative stress and toxicity. 2013. Annu. Rev. Pharmacol. Toxicol. 53 (1):401–26. doi:10.1146/annurev-pharmtox-011112-140320.
  • Macleod, M. R., A. Lawson McLean, A. Kyriakopoulou, S. Serghiou, A. de Wilde, N. Sherratt, T. Hirst, R. Hemblade, Z. Bahor, C. Nunes-Fonseca, et al. 2015. Risk of bias in reports of in vivo research: A focus for improvement. PLoS Biol., 13,(10):e1002273. doi:10.1371/journal.pbio.1002273.
  • Macleod M. R., O’Collins T., Howells D. W. and Donnan G. A. 2004. Pooling of Animal Experimental Data Reveals Influence of Study Design and Publication Bias. Stroke 35: 1203–1208. 10.1161/01.STR.0000125719.25853.20
  • Manjunatha, B., E. Seo, S. H. Park, S.R. R. Kundapur, and J.S. Lee. 2021. Pristine graphene and graphene oxide induce multi-organ defects in zebrafish (Danio rerio) larvae/juvenile: An in vivo study. Environ. Sci. Pollut. Res. Int. 28 (26):34664–75. doi:10.1007/s11356-021-13058-7.
  • Manning-Bog, A. B., A. L. McCormack, J. Li, V. N. Uversky, A. L. Fink, and D. A. Di Monte. 2002. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice. J. Biol. Chem. 277 (3):1641–44. doi:10.1074/jbc.C100560200.
  • Maries, E., B. Dass, T. J. Collier, J. H. Kordower, and K. Steece-Collier. 2003. The role of α-synuclein in Parkinson’s disease: Insights from animal models. Nat. Rev. Neurosci. 4 (9):727–38. doi:10.1038/nrn1199.
  • Martel, S., J. Y. Keow, and M. Ekker. 2015. Rotenone neurotoxicity causes dopamine neuron loss in zebrafish. Univ. Ottawa J. Med 15 (2):16–21. doi:10.18192/uojm.v5i2.1413.
  • Martí, Y., F. Matthaeus, T. Lau, and P. Schloss. 2017. Methyl-4-phenylpyridinium (MPP+) differentially affects monoamine release and re-uptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons. Mole. Cellular Neurosci 83:37–45. doi:10.1016/j.mcn.2017.06.009.
  • Matsui, H., A. Sugie, and J. Kanungo. 2017. An optimized method for counting dopaminergic neurons in zebrafish. PLoS. One 12 (9):1–12. doi:10.1371/journal.pone.0184363.
  • McDowell, K., and M. F. Chesselet. 2012. Animal models of the non-motor features of Parkinson’s disease. Neurobiol. Dis. 46 (3):597–606. doi:10.1016/j.nbd.2011.12.040.
  • McLean, D. L., and J. R. Fetcho. 2004. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J. Comp. Neurol. 480 (1):38–56. doi:10.1002/cne.20280.
  • Melo, K. M., R. Oliveira, C. K. Grisolia, I. Domingues, J. C. Pieczarka, J. de Souza Filho, and C. Y. Nagamachi. 2015. Short-term exposure to low doses of rotenone induces developmental, biochemical, behavioral, and histological changes in fish. Environ. Sci. Pollut. Res 22 (18):13926–38. doi:10.1007/s11356-015-4596-2.
  • Meredith, G. E., S. Totterdell, E. Petroske, K. Santa Cruz, R. C. Callison Jr, and Y. S. Lau. 2002. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res. 956 (1):156–65. doi:10.1016/s0006-8993(02)03514-x.
  • Milanese, C., J. J. Sager, Q. Bais, T. C. Farrells, J. R. Cannons, J. T. Greenamyre, and E. A. Burtons. 2012. Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins. J. Biol. Chem. 287 (5):2971–83. doi:10.1074/jbc.M111.308312.
  • Mitra, S., N. Chakrabarti, and A. Bhattacharyya. 2011. Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J. Neuroinflammation 8 (1):163. doi:10.1186/1742-2094-8-163.
  • Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 62 (10):1006–12. doi:10.1016/j.jclinepi.2009.06.005.
  • Moretto, A., and C. Colosio. 2011. Biochemical and toxicological evidence of neurological effects of pesticides: The example of Parkinson’s disease. NeuroToxicol. 32 (4):383–91. doi:10.1016/j.neuro.2011.03.004.
  • Murphy, M. P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417 (1):1–13. doi:10.1042/BJ20081386.
  • Nasuti, C., G. Brunori, P. Eusepi, L. Marinelli, R. Ciccocioppo, and R. Gabbianelli. 2017. Early life exposure to permethrin: A progressive animal model of Parkinson’s disease. J. Pharmacol. Toxicol. Methods 83:80–86. doi:10.1016/j.vascn.2016.10.003.
  • Naz, F., and Y. H. Siddique. 2021. Drosophila melanogaster a versatile model of Parkinson’s disease. CNS & Neurol. Dis. Drug Targets 20 (6):487–530. doi:10.2174/1871527320666210208125912.
  • Nellore, J., and P. Nandita. 2015. Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol. Rep 2:950–56. doi:10.1016/j.toxrep.2015.06.007.
  • Niedzielska, E., I. Smaga, M. Gawlik, A. Moniczewski, P. Stankowicz, J. Pera, and M. Filip. 2016. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 53 (6):4094–125. doi:10.1007/s12035-015-9337-5.
  • Ohnuki, T., A. Nakamura, S. Okuyama, and S. Nakamura. 2010. Gene expression profiling in progressively MPTP-lesioned macaques reveals molecular pathways associated with sporadic Parkinson’s disease. Brain Res. 1346:26–42. doi:10.1016/j.brainres.2010.05.066.
  • Pantoja, C., J. Larsch, E. Laurell, G. Marquart, M. Kunst, and H. Baier. 2020. Rapid effects of selection on brain-wide activity and behavior. Curr. Bio 30 (18):3647–3656.e3. doi:10.1016/j.cub.2020.06.086.
  • Panula, P., Y. C. Chen, M. Priyadarshini, H. Kudo, S. Semenova, M. Sundvik, and V. Sallinen. 2010. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. 40 (1):46–57. doi:10.1016/j.nbd.2010.05.010.
  • Park, J. -S., R. L. Davis, and C. M. Sue. 2018. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol Neurosci. Rep. 18 (5):21. doi:10.1007/s11910-018-0829-3.
  • Parng, C., N. M. Roy, C. Ton, Y. Lin, and P. McGrath. 2007. Neurotoxicity assessment using zebrafish. J. Pharmacol. Toxicol. Methods 55 (1):103–12. doi:10.1016/j.vascn.2006.04.004.
  • Peters, J. L., A. J. Sutton, D. R. Jones, L. Rushton, and K. R. Abrams. 2006. A systematic review of systematic reviews and meta-analyses of animal experiments with guidelines for reporting. J. Environ. Sci. Health, Part B 41 (7):1245–58. doi:10.1080/03601230600857130.
  • Pinho, B. R., S. D. Reis, P. Guedes-Dias, A. Leitão-Rocha, C. Quintas, P. Valentão, P. B. Andrade, M. M. Santos, and J.M.A. Oliveira. 2016. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson’s disease. Pharmacol. Res 103:328–39. doi:10.1016/j.phrs.2015.11.024.
  • Pinho, B. R., S. D. Reis, R. C. Hartley, M. P. Murphy, and J.M.A. Oliveira. 2019. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic. Biol. Med. 130:318–27. doi:10.1016/j.freeradbiomed.2018.10.446.
  • Poewe, W., K. Seppi, C. M. Tanner, G. M. Halliday, P. Brundin, J. Volkmann, A. E. Schrag, and A. E. Lang. 2017. Parkinson disease. Nat. Rev. Dis. Primers 3 (1):17013. doi:10.1038/nrdp.2017.13.
  • Prabhudesai, S., S. Sinha, A. Attar, A. Kotagiri, A. G. Fitzmaurice, R. Lakshmanan, M. I. Ivanova, J. A. Loo, F. -G. Klärner, T. Schrader, et al. 2012. A novel “molecular tweezer” Inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics, 9,(2):464–76. doi:10.1007/s13311-012-0105-1
  • Prasuhn, J., and N. Brüggemann. 2021. Gene therapeutic approaches for the treatment of mitochondrial dysfunction in Parkinson’s disease. Genes 12 (11):1840. doi:10.3390/genes12111840.
  • Qian, L., S. Qi, Z. Wang, J. T. Magnuson, D. C. Volz, D. Schlenk, J. Jiang, and C. Wang. 2021. Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. J. Hazard. Mater. 404:124083. doi:10.1016/j.jhazmat.2020.124083.
  • Radad, K., M. Al-Shraim, A. Al-Emam, F. Wang, B. Kranner, W. D. Rausch, and R. Moldzio. 2019. Rotenone: From modelling to implication in Parkinson’s disease. Folia Neuropathol. 57 (4):317–26. doi:10.5114/fn.2019.89857.
  • Randlett, O., M. Haesemeyer, G. Forkin, H. Shoenhard, A. F. Schier, F. Engert, and M. Granato. 2019. Distributed plasticity drives visual habituation learning in larval zebrafish. Curr. Bio 29 (8):1337–1345.e4. doi:10.1016/j.cub.2019.02.039.
  • Razali, K., M. H. Mohd Nasir, N. Othman, A. A. Doolaanea, J. Kumar, W. N. Ibrahim, W.M.Y. Mohamed, and B. Giros. 2022. Characterization of neurobehavioral pattern in a zebrafish 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model: A 96-hour behavioral study. PLoS. One 17 (10):e0274844. doi:10.1371/journal.pone.0274844.
  • Razali, K., N. Othman, M. H. Mohd Nasir, A. A. Doolaanea, J. Kumar, W. N. Ibrahim, N. M. Ibrahim, and N. M. Y. Mohamed Wmy. 2021. The promise of the zebrafish model for Parkinson’s disease: Today’s science and tomorrow’s treatment. Front Genet. 12:655550. doi:10.3389/fgene.2021.655550.
  • Reif, D. M., L. Truong, D. Mandrell, S. Marvel, G. Zhang, and R. L. Tanguay. 2016. High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch. Toxicol. 90 (6):1459–70. doi:10.1007/s00204-015-1554-1.
  • Reinig, S., W. Driever, and A. B. Arrenberg. 2017. The descending diencephalic dopamine system is tuned to sensory stimuli. Curr. Bio 27 (3):318–33. doi:10.1016/j.cub.2016.11.059.
  • Ren, C., X. Hu, X. Li, and Q. Zhou. 2016. Ultra-trace graphene oxide in a water environment triggers Parkinson’s disease-like symptoms and metabolic disturbance in zebrafish larvae. Biomaterials 93:83–94. doi:10.1016/j.biomaterials.2016.03.036.
  • Rink, E., and M. F. Wullimann. 2001. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res. 889: 316–30. doi:10.1016/S0006-8993(00)03174-7
  • Robea, M. A., I. M. Balmus, A. Ciobica, S. Strungaru, G. Plavan, L. D. Gorgan, A. Savuca, and M. Nicoara. 2020. Parkinson’s disease-induced zebrafish models: Focussing on oxidative stress implications and sleep processes. Oxid. Med. Cell Longev 2020:1370837. doi:10.1155/2020/1370837.
  • Rosa, J. G. S., C. Lima, and M. Lopes-Ferreira. 2022. Zebrafish larvae behavior models as a tool for drug screenings and pre-clinical trials: A review. Int. J. Mol. Sci. 23 (12):6647. doi:10.3390/ijms23126647.
  • Sai, Y., Z. Zou, K. Peng, and Z. Dong. 2012. The Parkinson’s disease-related genes act in mitochondrial homeostasis. Neurosci. Biobehav. Rev. 36 (9):2034–43. doi:10.1016/j.neubiorev.2012.06.007.
  • Sallinen, V., V. Torkko, M. Sundvik, I. Reenilä, D. Khrustalyov, J. Kaslin, and P. Panula. 2009. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish. J. Neurochem. 108 (3):719–31. doi:10.1111/j.1471-4159.2008.05793.x.
  • Saluja, D., R. Jhanji, S. Kaushal, B. Verma, N. Sharma, R. Singh, S. Agrawal, M. Yadav, A. Kumar, C. Singh, et al. 2021. Importance of zebrafish as an efficient research model for the screening of novel therapeutics in neurological disorders. CNS & Neurol. Dis. Drug Targets, 20,(2):145–57. doi:10.2174/187152731-9666201207211927
  • Santos, D. B., D. Colle, E.L. Moreira, M. A. Hort, M. Godoi, G. Le Douaron, A. L. Braga, J. Assreuy, P. P. Michel, R. D. Prediger, et al. 2017. Succinobucol, a non-statin hypocholesterolemic drug, prevents premotor symptoms and nigrostriatal neurodegeneration in an experimental model of Parkinson’s disease. Mol. Neurobiol. 54 (2):1513–30. doi:10.1007/s12035-016-9747-z.
  • Sarasamma, S., G. Audira, P. Samikannu, S. Juniardi, P. Siregar, E. Hao, J. Chen, and C. Hsiao. 2019. Behavioral impairments and oxidative stress in the brain, muscle, and gill caused by chronic exposure of C70 Nanoparticles on adult zebrafish. Int. J. Mol. Sci. 20 (22):5795. doi:10.3390/ijms20225795.
  • Schmidt, N., and B. Ferger. 2001. Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. 108 (11):1263–82. doi:10.1007/s007020100004.
  • Schnörr, S. J., P. J. Steenbergen, M. K. Richardson, and D. L. Champagne. 2012. Measuring thigmotaxis in larval zebrafish. Behav. Brain Res. 228 (2):367–74. doi:10.1016/j.bbr.2011.12.016.
  • Schober, A. 2004. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 318 (1):215–24. doi:10.1007/s00441-004-0938-y.
  • Schweitzer, J., H. Lohr, A. Filippi, and W. Driever. 2012. Dopaminergic and noradrenergic circuit development in zebrafish. Dev. Neurobiol. 72 (3):256–68. doi:10.1002/dneu.20911.
  • Semenova, S. A., Y. C. Chen, X. Zhao, H. Rauvala, and P. Panula. 2014. The tyrosine hydroxylase 2 (TH2) system in zebrafish brain and stress activation of hypothalamic cells. Histochem. Cell Biol. 142 (6):619–33. doi:10.1007/s00418-014-1240-z.
  • Shi, X., Y. Du, P. K. S. Lam, R. S. S. Wu, and B. Zhou. 2008. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol. Appl. Pharmacol. 230 (1):23–32. doi:10.1016/j.taap.2008.01.043.
  • Shukla, R. K., Y. K. Dhuriya, L. P. Chandravanshi, R. Gupta, P. Srivastava, A. B. Pan, A. Kumar, C. M. Pandey, M. H. Siddiqui, and V. K. Khanna. 2017. Influence of immobilization and forced swim stress on the neurotoxicity of lambda-cyhalothrin in rats: Effect on brain biogenic amines and BBB permeability. NeuroToxicology 60:187–96. doi:10.1016/j.neuro.2016.07.002.
  • Silva, R. F. O., B. R. Pinho, M. M. Santos, and J. M. A. Oliveira. 2022. Disruptions of circadian rhythms, sleep, and stress responses in zebrafish: New infrared-based activity monitoring assays for toxicity assessment. Chemosphere 305:135449. doi:10.1016/j.chemosphere.2022.135449.
  • Simon, D. K., C. M. Tanner, and P. Brundin. 2020. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 36 (1):1–12. doi:10.1016/j.cger.2019.08.002.
  • Sun, Y., L. He, T. Wang, W. Hua, H. Qin, J. Wang, L. Wang, W. Gu, T. Li, N. Li, et al. 2020. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells. Mol. Neurobiol., 57,(11):4628–41. doi:10.1007/s12035-020-02049-3
  • Surmeier, D. J., J. A. Obeso, and G. M. Halliday. 2017. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18 (2):101–13. doi:10.1038/nrn.2016.178.
  • Swarnkar, S., P. Goswami, P. K. Kamat, I. K. Patro, S. Singh, and C. Nath. 2013. Rotenone-induced neurotoxicity in rat brain areas: A study on neuronal and neuronal supportive cells. Neuroscience 230:172–83. doi:10.1016/j.neuroscience.2012.10.034.
  • Tanner, C. M., F. Kamel, G. W. Ross, J. A. Hoppin, S. M. Goldman, M. Korell, C. Marras, G. S. Bhudhikanok, M. Kasten, A. R. Chade, et al. 2011. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 119 (6):866–72. doi:10.1289/ehp.1002839.
  • Tartaglione, A. M., A. Venerosi, and G. Calamandrei. 2016. Early-life toxic Insults and onset of sporadic neurodegenerative diseases-an Overview of experimental studies. Current Topics in Behav. Neurosci 29:231–64. doi:10.1007/7854_2015_416.
  • Tay, T. L., O. Ronneberger, S. Ryu, R. Nitschke, and W. Driever. 2011. Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat. Commun. 2 (1):171. doi:10.1038/ncomms1171.
  • Thirugnanam, T., and K. Santhakumar. 2022. Chemically induced models of Parkinson’s disease. Comp. Biochem. Physiol. C: Toxicol. Pharmacol 252:109213. doi:10.1016/j.cbpc.2021.109213.
  • Thirumalai, V., and H. T. Cline. 2008. Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J. Neurophysiol. 100 (3):1635–48. doi:10.1152/jn.90568.2008.
  • Tierney, K. B. 2011. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochi. Biophy. Acta (BBA) - Mol. Basis of Dis 1812 (3):381–89. doi:10.1016/j.bbadis.2010.10.011.
  • Üstündağ, F. D., I. Ünal, D. Cansız, U. V. Üstündağ, H. K. Subaşat, A. A. Alturfan, P. M. Tiber, and E. Emekli-Alturfan. 2020. 3-Pyridinylboronic acid normalizes the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in zebrafish embryos. Drug Chem. Toxicol. 45 (2):947–54. doi:10.1080/01480545.2020.1795189.
  • Üstündağ, F. D., İ. Ünal, Ü. V. Üstündağ, D. Cansız, M. Beler, A. Karagöz, H. K. Subaşat, A. A. Alturfan, P. M. Tiber, and E. Emekli-Alturfan. 2022. 3-pyridinylboronic acid ameliorates rotenone-induced oxidative stress through nrf2 target genes in zebrafish embryos. Neurochem. Res. 47 (6):1553–64. doi:10.1007/s11064-022-03548-6.
  • Vaccari, C., R. Dib, H. Gomaa, L. C. Lopes, J. Lauro, and C. Vaccari. 2019. Paraquat and Parkinson’s disease: A systematic review and meta-analysis of observational studies. J. Toxicol. Environ. Health B 22 (5–6):172–202. doi:10.1080/10937404.2019.1659197.
  • Varešlija, D., K. F. Tipton, G. P. Davey, and A. G. McDonald. 2020. 6-Hydroxydopamine: A far from simple neurotoxin. J. Neural Transm. 172 (2):213–30. doi:10.1007/s00702-019-02133-6.
  • Vaz, R. L., S. Sousa, D. Chapela, H. C. van der Linde, R. Willemsen, A. D. Correia, T. F. Outeiro, and N. D. Afonso. 2020. Identification of antiparkinsonian drugs in the 6-hydroxydopamine zebrafish model. Pharmacol. Biochem. Behav. 189:172828. doi:10.1016/j.pbb.2019.172828.
  • Vila, M., S. Vukosavic, V. Jackson-Lewis, M. Neystat, M. Jakowec, and S. Przedborski. 2000. α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74 (2):721–29. doi:10.1046/j.1471-4159.2000.740721.x.
  • Vitoratos, A. G. 2014. Mode of action and genetic analysis of resistance to fluazinam in Ustilago maydis. J. Phytopathol 162 (11–12):737–46. ddoi:10.1111/jph.12254.
  • Wang, Y., L. Gao, J. Chen, Q. Li, L. Huo, Y. Wang, H. Wang, and J. Du. 2021. Pharmacological modulation of nrf2/ho-1 signaling pathway as a therapeutic target of Parkinson’s disease. Front Pharmacol. 12:1–35. doi:10.3389/fphar.2021.757161.
  • Wang, X. H., C. L. Souders, Y. H. Zhao, and C. J. Martyniuk. 2018a. Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquat. Toxicol. Lett. 283:13–20. doi:10.1016/j.toxlet.2017.10.022.
  • Wang, J., H. Xu, H. Jiang, X. Du, P. Sun, and J. Xie. 2012. Neurorescue effect of rosmarinic acid on 6-hydroxydopamine-lesioned nigral dopamine neurons in rat model of parkinson’s Disease. J. Mol. Neurosci 47 (1):113–19. doi:10.1007/s12031-011-9693-1.
  • Wang, Z., H. Zhao, Y. Xu, J. Zhao, Z. Song, Y. Bi, Y. Li, Lan X, Pan C, Foulkes NS, Zhang S. 2022. Early-life lead exposure induces long-term toxicity in the central nervous system: From zebrafish larvae to juveniles and adults. Sci. Total Environ. 804:150185. doi:10.1016/j.scitotenv.2021.150185.
  • Wang, X. H., S. S. Zheng, T. Huang, L. M. Su, Y. H. Zhao, C. L. Souders, and C. J. Martyniuk. 2018b. Fluazinam impairs oxidative phosphorylation and induces hyper/hypo-activity in a dose specific manner in zebrafish larvae. Chemosphere 210:633–44. doi:10.1016/j.chemosphere.2018.07.056.
  • Wichmann, T. 2019. Changing views of the pathophysiology of parkinsonism. Mov. Disorders 34 (8):1130–43. doi:10.1002/mds.27741.
  • Woodard, A., B. Barbery, R. Wilkinson, J. Strozyk, M. Milner, P. Doucette, J. Doran, K. Appleby, H. Atwill, W. E. Bell, et al. 2019. The role of neuronal nitric oxide and its pathways in the protection and recovery from neurotoxin-induced de novo hypokinetic motor behaviors in the embryonic zebrafish. Danio. rerio. 6 (1):25–42. doi:10.3934/Neuroscience.2019.1.25.
  • Wu, W., H. Han, J. Liu, M. Tang, X. Wu, X. Cao, T. Zhao, Y. Lu, T. Niu, J. Chen, et al. 2021. Fucoxanthin prevents 6-OHDA-induced neurotoxicity by targeting keap1. Oxid. Med Cell Longev 2021:6688708. doi:10.1155/2021/6688708.
  • Xu, J., R. Casanave, and S. Guo. 2021. Larval zebrafish display dynamic learning of aversive stimuli in a constant visual surrounding. Learn. Memory 28 (7):228–38. doi:10.1101/lm.053425.121.
  • Xu, D. P., K. Zhang, Z. J. Zhang, Y. W. Sun, B. J. Guo, Y. Q. Wang, P. M. Hoi, Y. F. Han, and S. M. Y. Lee. 2014. A novel tetramethylpyrazine bis-nitrone (TN-2) protects against 6-hydroxyldopamine-induced neurotoxicity via modulation of the NF-κB and the PKCα/PI3-K/Akt pathways. Neurochem. Int. 78:76–85. doi:10.1016/j.neuint.2014.09.001.
  • Yao, L., S. X. Peng, Y. Xu, S. L. Lin, Y. H. Li, C. J. Liu, H. Zhao, L. F. Wang, and Y. Q. Shen. 2016. Unexpected neuroprotective effects of loganin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity and cell death in zebrafish. J. Cell. Biochem. 118 (3):615–28. doi:10.1002/jcb.25749.
  • Yasuda, Y., T. Shimoda, K. Uno, N. Tateishi, S. Furuya, K. Yagi, K. Suzuki, and S. Fujita. 2008. The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. J. Neuroimmunol. 204 (1–2):43–51. doi:10.1016/j.jneuroim.2008.08.003.
  • Yee, A. G., S. M. Lee, M. R. Hunter, M. Glass, P. S. Freestone, and J. Lipski. 2014. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. NeuroToxicology 45:1–11. doi:10.1016/j.neuro.2014.08.009.
  • Yu, H., J. Zhang, Y. Chen, J. Chen, Y. Qiu, Y. Zhao, H. Li, S. Xia, S. Chen, and J. Zhu. 2022. The adverse effects of fluxapyroxad on the neurodevelopment of zebrafish embryos. Chemosphere 307:135751. doi:10.1016/j.chemosphere.2022.135751.
  • Zeng, X. S., W. S. Geng, and J. J. Jia. 2018. Neurotoxin-induced animal models of Parkinson Disease: Pathogenic mechanism and assessment. ASN. Neuro 10:1759091418777438. doi:10.1177/1759091418777438.
  • Zhang, Z. J., L. C. V. Cheang, M. W. Wang, and S. M. Y. Lee. 2010. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int. J. Mol. Med. 27 (2):195–203. doi:10.3892/ijmm.2010.571.
  • Zhang, Z. J., L. C. V. Cheang, M. W. Wang, G. H. Li, I. K. Chu, Z. X. Lin, and S. M. Y. Lee. 2012. Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell. Mol. Neurobiol. 32 (1):27–40. doi:10.1007/s10571-011-9731-0.
  • Zhang, J., V. A. Fitsanakis, G. Gu, D. Jing, M. Ao, V. Amarnath, and T. J. Montine. 2003. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: A link through mitochondrial dysfunction. J. Neurochem. 84 (2):336–46. doi:10.1046/j.1471-4159.2003.01525.x.
  • Zhang, C., C. Li, S. Chen, Z. Li, X. Jia, K. Wang, J. Bao, Y. Liang, X. Wang, M. Chen, et al. 2017. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol. 11:1–11. doi:10.1016/j.redox.2016.10.019.
  • Zhang, C., C. Li, S. Chen, Z. Li, L. Ma, X. Jia, K. Wang, J. Bao, Y. Liang, M. Chen, et al. 2017. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Sci. Rep., 7,(1):1–12. doi:https://doi.org/10.1038/srep41082
  • Zhang, L., Y. Y. Li, T. Chen, W. Xia, Y. Zhou, Y. J. Wan, Z. Q. Lv, G. Q. Li, and S. Q. Xu. 2011. Abnormal development of motor neurons in perfluorooctane sulphonate exposed zebrafish embryos. Ecotoxicology 20 (4):643–52. doi:10.1007/s10646-011-0604-6.
  • Zhang, D., S. Li, L. Hou, L. Jing, Z. Ruan, B. Peng, X. Zhang, J. S. Hong, J. Zhao, and Q. Wang. 2021. Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson’s disease model. J . Neuroinflammation 18 (1):4. doi:10.1186/s12974-020-02065-z.
  • Zhang, Z., G. Li, S. S. W. Szeto, C. M. Chong, Q. Quan, C. Huang, W. Cui, B. Guo, Y. Wang, Y. Han, et al. 2015a. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic. Biol. Med. 84:331–43. doi:10.1016/j.freeradbiomed.2015.02.030.
  • Zhang, L. Q., F. Sa, C. M. Chong, Y. Wang, Z. Y. Zhou, R. C. C. Chang, S. W. Chan, P. M. Hoi, and S. M. Yuen Lee. 2015b. Schisantherin a protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J. Ethnopharmacol. 170:8–15. doi:10.1016/j.jep.2015.04.040.
  • Zhang, J., B. Sun, J. Yang, Z. Chen Li, N. Zhang, H. Li, and L. Shen. 2022. Comparison of the effect of rotenone and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine on inducing chronic Parkinson’s disease in mouse models. Mol. Med. Rep. 25:91. doi:10.3892/mmr.2022.12607.
  • Zhang, J., M. Wang, Y. Zhao, Y. Zhang, Y. Gao, X. Zhang, and G. Yang. 2022. Alpha-lipoic acid improved motor function in MPTP-induced Parkinsonian mice by reducing neuroinflammation in the nigral and spinal cord. Neurosci. Lett. 781:136669. doi:10.1016/j.neulet.2022.136669.
  • Zhao, Y., Y. Han, Z. Wang, T. Chen, H. Qian, J. He, J. Li, B. Han, and T. Wang. 2020. Rosmarinic acid protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos. Toxicol. Vitro 65:1–10. doi:10.1016/j.tiv.2020.104823.
  • Zhong, H. J., J. J. Liu, C. M. Chong, L. Lu, M. Wang, D. S. H. Chan, P. W. H. Chan, S. M. Lee, D. L. Ma, and C. H. Leung. 2014. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS. One 9:e92905. doi:10.1371/journal.pone.0092905.
  • Zhou, Y., P. Li, A. Brantner, H. Wang, X. Shu, J. Yang, N. Si, L. Han, H. Zhao, and B. Bian. 2017. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients. Sci. Rep. 7 (1):1–14. doi:10.1038/srep44660.
  • Zhu, J., R. Xia, Z. Liu, J. Shen, X. Gong, Y. Hu, H. Chen, Y. Yu, W. Gao, C. Wang, et al. 2020. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. Chemosphere 243:125336. doi:10.1016/j.chemosphere.2019.125336.
  • Zis, P., R. Erro, C. C. Walton, A. Sauerbier, and K. R. Chaudhuri. 2015. The range and nature of non-motor symptoms in drug-naive Parkinson’s disease patients: A state-of-the-art systematic review. Npj Parkinson’s Dis. 1 (1):15013. doi:10.1038/npjparkd.2015.13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.