280
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Buthionine sulfoximine and chemoresistance in cancer treatments: a systematic review with meta-analysis of preclinical studies

, , , , , & show all

References

  • Anderson, C. P., and C. P. P. Reynolds. 2002. Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. Bone Marrow Transplant. 30 (3):135–40. doi:10.1038/sj.bmt.1703605.
  • Anderson, C. P., J. M. Tsai, W. E. Meek, R. M. Liu, Y. Tang, H. J. Forman, and C. P. Reynolds. 1999. Depletion of glutathione by buthionine sulfoxine is cytotoxic for human neuroblastoma cell lines via apoptosis. Exp. Cell Res. 246 (1):183–92. doi:10.1006/excr.1998.4303.
  • Anderstam, B., and M. Harms-Ringdahl. 1988. Increased antineoplastic activity of combined hyperthermic and bleomycin treatments in an adenocarcinoma after glutathione depletion in vivo. Int. J. Hyperthermia. 4 (3):297–306. doi:10.3109/02656738809051105.
  • Araújo, E. J. F., G. A. L. Oliveira, L. Q. Sousa, V. S. Bolzani, A. J. Cavalheiro, A. R. Tomé, A. P. Peron, A. G. Santos, A. M. G. L. Citó, C. Pessoa, et al. 2015. Counteracting effects on free radicals and histological alterations induced by a fraction with casearins. An. Acad. Bras. Ciênc. 87 (3):1791–807. doi:10.1590/0001-3765201520150149.
  • Arrick, B. A., C. F. Nathan, and Z. A. Cohn. 1983. Inhibition of glutathione synthesis augments lysis of murine tumor cells by sulfhydryl-reactive antineoplastics. J. Clin. Invest. 71 (2):258–67. doi:10.1172/jci110766.
  • Asantewaa, G., and I. S. Harris. 2021. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 68:292–99. doi:10.1016/j.copbio.2021.03.001.
  • Bailey, H. H., R. T. Mulcahy, K. D. Tutsch, R. Z. Arzoomanian, D. Alberti, M. B. Tombes, G. Wilding, M. Pomplun, and D. R. Spriggs. 1994. Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: An attempt at modulation of glutathione. J. Clin. Oncol. 12 (1):194–205. doi:10.1200/JCO.1994.12.1.194.
  • Bailey, H. H., G. Ripple, K. D. Tutsch, R. Z. Arzoomanian, D. Alberti, C. Feierabend, D. Mahvi, J. Schink, M. Pomplun, R. T. Mulcahy, et al. 1997. Phase I study of continuous-infusion L-S,R-buthionine sulfoximine with intravenous melphalan. J. Natl. Cancer Inst. 89:1789–96. doi:10.1093/jnci/89.23.1789.
  • Bansal, A., D. J. Sanchez, V. Nimgaonkar, D. Sanchez, R. Riscal, N. Skuli, and M. C. Simon. 2019. Gamma-glutamyltransferase 1 promotes clear cell renal cell carcinoma initiation and progression. Mol. Cancer Res. 17 (9):1881–92. doi:10.1158/1541-7786.MCR-18-1204.
  • Bergamini, F. R. G., M. A. Ferreira, R. E. F. Paiva, A. F. Gomes, F. C. Gozzo, A. L. B. Formiga, F. C. A. Corbi, I. O. Mazali, D. A. Alves, M. Lancellotti, et al. 2012. A binuclear silver complex with l-buthionine sulfoximine: Synthesis, spectroscopic characterization, DFT studies and antibacterial assays. RSC Adv. 2 (27):10372–79. doi:10.1039/C2RA21433D.
  • Brasil. 2021. Diretrizes metodológicas: Elaboração de revisão sistemática e meta-análise de ensaios clínicos randomizados. Brasília: Ministerio da Saúde. http://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_elaboracao_revisao_sistematica_meta-analise.pdf
  • Calvin, H. I., S. A. Patel, J. P. Zhang, M. Y. Li, and S. C. Fu. 1992. Progressive modifications of mouse lens crystallins in cataracts induced by buthionine sulfoximine. Exp. Eye Res. 54:611–19. doi:10.1016/0014-4835(92)90140-n.
  • Caramés, M., A. Alonso-Varona, I. García-Alonso, and T. Palomares. 2010. Glutathione modulators reverse the pro-tumour effect of growth factors enhancing WiDr cell response to chemotherapeutic agents. Anticancer Res. 30 (4):1223–31.
  • Chen, C. L., C. W. Chi, and T. Y. Liu. 2000. Enhanced hydroxychavicol-induced cytotoxic effects in glutathione-depleted HepG2 cells. Cancer Lett. 155:29–35. doi:10.1016/s0304-3835(00)00404-3.
  • Cilurzo, F., M. C. Cristiano, M. Da Pian, E. Cianflone, L. Quintieri, D. Paolino, and G. Pasut. 2019. Overcoming cancer cell drug resistance by a folic acid targeted polymeric conjugate of buthionine sulfoximine. Anticancer. Agents Med. Chem. 19:1513–22. doi:10.2174/1871520619666190626114641.
  • Coshan-Gauthier, R. K., and D. L. Kirkpatrick. 1989. Attempted modulation of disulfide antitumor activity in Balb/c mice through glutathione depletion. Exp. Cell Biol. 57:273–80. doi:10.1159/000163537.
  • Cruz, A., P. Mota, C. Ramos, R. F. Pires, C. Mendes, J. P. Silva, S. C. Nunes, V. D. B. Bonifácio, and J. Serpa. 2020. Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance. Antioxidants 9 (2):133. doi:10.3390/antiox9020133.
  • Daga, M., C. Ullio, M. Argenziano, C. Dianzani, R. Cavalli, F. Trotta, C. Ferretti, G. P. Zara, C. L. Gigliotti, E. S. Ciamporcero, et al. 2016. GSH-targeted nanosponges increase doxorubicin-induced toxicity “in vitro” and “in vivo” in cancer cells with high antioxidant defenses. Free Radic. Biol. Med. 97:24–37. doi:10.1016/j.freeradbiomed.2016.05.009.
  • Day, C. P., G. Merlino, and T. Van Dyke. 2015. Preclinical mouse cancer models: A maze of opportunities and challenges. Cell 163 (1):39–53. doi:10.1016/j.cell.2015.08.068.
  • Deeks, J. J., J. P. Higgins, and D. G. Altman. 2022. Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane. Updated February 2022. Available from https://training.cochrane.org/handbook/current.
  • DerSimonian, R., and N. Laird. 1986. Meta-analysis in clinical trials. Control Clin. Trials 7 (3):177–88. doi:10.1016/0197-2456(86)90046-2.
  • Domcke, S., R. Sinha, D. A. Levine, C. Sander, and N. Schultz. 2013. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4 (1):2126. doi:10.1038/ncomms3126.
  • Dong, Z., L. Feng, Y. Chao, Y. Hao, M. Chen, F. Gong, X. Han, R. Zhang, L. Cheng, and Z. Liu. 2019. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 19 (2):805–15. doi:10.1021/acs.nanolett.8b03905.
  • Dorr, R. T., J. D. Liddil, and M. J. Soble. 1986. Cytotoxic effects of glutathione synthesis inhibition by L-buthionine-(SR)-sulfoximine on human and murine tumor cells. Invest. New Drugs 4 (4):305–13. doi:10.1007/BF00173503.
  • Edis, Z., J. Wang, M. K. Waqas, M. Ijaz, and M. Ijaz. 2021. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomed 16:1313–30. doi:10.2147/IJN.S289443.
  • Faundez, M., L. Pino, P. Letelier, C. Ortiz, R. López, C. Seguel, J. Ferreira, M. Pavani, A. Morello, and J. D. Maya. 2005. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrob. Agents Chemother. 49 (1):126–30. doi:10.1128/AAC.49.1.126-130.2005.
  • Ferreira, P. M. P., J. R. O. Ferreira, R. W. R. Sousa, D. P. Bezerra, and G. C. G. Militão. 2021. Aminoquinolines as translational models for drug repurposing: Anticancer adjuvant properties and toxicokinetic-related features. J. Oncol. 2021:1–18. doi:10.1155/2021/3569349.
  • Ferreira, P. M. P., and C. Pessoa. 2017. Molecular biology of human epidermal receptors, signaling pathways and targeted therapy against cancers: New evidences and old challenges. Braz. J. Pharm. Sci. 53 (2):16076. doi:10.1590/s2175-97902017000216076.
  • Ferreira, P. M. P., L. A. R. L. Rodrigues, L. P. A. Carnib, P. V. L. Sousa, L. M. N. Lugo, N. M. F. Nunes, J. N. Silva, L. S. Araújo, and K. M. G. Frota. 2018. Cruciferous vegetables as antioxidative, chemopreventive and antineoplasic functional foods: Preclinical and clinical evidences of sulforaphane against prostate cancers. Curr. Pharm. Des. 24 (40):4779–93. doi:10.2174/1381612825666190116124233.
  • Fischer, M. L., and G. S. Rodrigues. 2018. Planejamento e divulgação da pesquisa com animais como parâmetro de integridade. Rev. Bioét 26 (4):543–55. doi:10.1590/1983-80422018264273.
  • Forman, H. J., H. Zhang, and A. Rinna. 2009. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30:1–12. doi:10.1016/j.mam.2008.08.006.
  • Gana, C. C., K. M. Hanssen, D. M. T. Yu, C. L. Flemming, M. S. Wheatley, G. Conseil, S. P. C. Cole, M. D. Norris, M. Haber, and J. I. Fletcher. 2019. MRP1 modulators synergize with buthionine sulfoximine to exploit collateral sensitivity and selectively kill MRP1-expressing cancer cells. Biochem. Pharmacol. 168:237–48. doi:10.1016/j.bcp.2019.07.009.
  • Gartenhaus, R. B., S. N. Prachand, M. Paniaqua, Y. Li, and L. I. Gordon. 2002. Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: Enhancement of apoptosis by manipulation of cellular redox state. Clin. Cancer Res. 8 (2):566–72.
  • Gong, M. Q., C. Wu, X. Y. He, J. Y. Zong, J. L. Wu, R. X. Zhuo, and S. X. Cheng. 2017. Tumor targeting synergistic drug delivery by self-assembled hybrid nanovesicles to overcome drug resistance. Pharm. Res. 34 (1):148–60. doi:10.1007/s11095-016-2051-9.
  • Gorrini, C., I. S. Harris, and T. W. Mak. 2013. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug. Discov. 12 (12):931–47. doi:10.1038/nrd4002.
  • Goto, H., M. Yanagimachi, R. Kajiwara, F. Kuroki, and S. Yokota. 2007. Lack of mitochondrial depolarization by oxidative stress is associated with resistance to buthionine sulfoximine in acute lymphoblastic leukemia cells. Leuk. Res. 31:1293–301. doi:10.1016/j.leukres.2007.01.003.
  • Griffith, O. W. 1982. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem. 257 (22):13704–12. doi:10.1016/S0021-9258(18)33504-X.
  • Griffith, O. W., and A. Meister. 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254 (16):7558–60. doi:10.1016/S0021-9258(18)35980-5.
  • Hadzic, T., N. Aykin-Burns, Y. Zhu, M. C. Coleman, K. Leick, G. M. Jacobson, and D. R. Spitz. 2010. Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress. Free Radic. Biol. Med. 48:1024–33. doi:10.1016/j.freeradbiomed.2010.01.018.
  • Han, Y. H., S. Z. Kim, S. H. Kim, and W. H. Park. 2008a. Enhancement of arsenic trioxide-induced apoptosis in HeLa cells by diethyldithiocarbamate or buthionine sulfoximine. Int. J. Oncol. 33:205–13. doi:10.3892/ijo.33.1.205.
  • Han, Y. H., S. Z. Kim, S. H. Kim, and W. H. Park. 2008b. Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthionine sulfoximine. Mol. Cells 26 (2):158–64.
  • Hernández-Breijo, B., J. Monserrat, S. Ramírez-Rubio, E. P. Cuevas, D. Vara, I. Díaz-Laviada, M. D. Fernández-Moreno, I. D. Román, J. P. Gisbet, and L. G. Guijarro. 2011. Preclinical evaluation of azathioprine plus buthionine sulfoximine in the treatment of human hepatocarcinoma and colon carcinoma. World J.Gastroenterol. 17(34):3899–911. doi:10.3748/wjg.v17.i34.3899.
  • Higgins, J. P., T. Li, and J. J. Deeks. 2021. Chapter 6: Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2, ed. J. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. Page, and V. Welch. Cochrane. updated February 2021. Available from https://training.cochrane.org/handbook/current.
  • Hooijmans, C. R., M. M. Rovers, R. B. Vries, M. Leenaars, M. Ritskes-Hoitinga, and M. W. Langendam. 2014. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Meth 14 (1):43. doi:10.1186/1471-2288-14-43.
  • Hounsell, C., and Y. Fan. 2021. The duality of caspases in cancer, as told through the fly. Int. J. Mol. Sci. 22:8927. doi:10.3390/ijms22168927.
  • Huber, P. C., W. P. Almeida, and A. Fátima. 2008. Glutationa e enzimas relacionadas: papel biológico e importância em processos patológicos. Quím. Nova 31 (5):1170–79. doi:10.1590/S0100-40422008000500046.
  • Jafari, M., V. Sriram, G. Premnauth, E. Merino, and J. Y. Lee. 2022. Modified peroxamide-based reactive oxygen species (ROS)-responsive doxorubicin prodrugs. Bioorg. Chem. 127:105990. doi:10.1016/j.bioorg.2022.105990.
  • Jagust, P., S. Alcalá, B. Sainz Jr, C. Heeschen, and P. Sancho. 2020. Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J. Stem. Cells 12 (11):1410–28. doi:10.4252/wjsc.v12.i11.1410.
  • Jiang, G., S. Zhang, A. Yazdanparast, M. Li, A. V. Pawar, Y. Liu, S. M. Inavolu, and L. Cheng. 2016. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. Bmc Genomics. 17 (S7):525. doi:10.1186/s12864-016-2911-z.
  • Kapoor, P., M. Sachdev, and R. Madhubala. 2000. Inhibition of glutathione synthesis as a chemotherapeutic strategy for leishmaniasis. Trop. Med. Int. Health 5 (6):438–42. doi:10.1046/j.1365-3156.2000.00565.x.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A. G. Lenz, T. Fernandes, R. P. Schins, F. R. Cassee, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human Health—ENPRA project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B 19 (1):1–28. doi:10.1080/10937404.2015.1126210.
  • Kiebala, M., J. Skalska, C. Casulo, P. S. Brookes, D. R. Peterson, S. P. Hilchey, Y. Dai, S. Grant, S. B. Maggirwar, and S. H. Bernstein. 2015. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: A novel synergistic therapeutic approach. Exp. Hematol. 43 (2):89–99. doi:10.1016/j.exphem.2014.10.004.
  • Kim, S. J., H. S. Kim, and Y. R. Seo. 2019. Understanding of ROS-inducing strategy in anticancer therapy. Oxid. Med. Cell Longev. 2019:5381692. doi:10.1155/2019/5381692.
  • Kirkpatrick, D. L., and G. Powis. 2017. Clinically evaluated cancer drugs inhibiting redox signaling. Antioxid. Redox Signal. 26:262–73. doi:10.1089/ars.2016.6633.
  • Kitaeva, K. V., C. S. Rutland, A. A. Rizvanov, and V. V. Solovyeva. 2020. Cell culture based in vitro test systems for anticancer drug screening. Front Bioeng. Biotechnol. 8:322. doi:10.3389/fbioe.2020.00322.
  • Lai, G. M., J. A. Moscow, M. G. Alvarez, A. T. Fojo, and S. E. Bates. 1991. Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int. J. Cancer 49 (5):688–95. doi:10.1002/ijc.2910490511.
  • Lee, M., A. Jo, S. Lee, J. B. Kim, Y. Chang, J. Y. Nam, H. Cho, Y. Y. Cho, E. J. Cho, J.-H. Lee, et al. 2017. 3-bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One. 12(3):e0174271. doi:10.1371/journal.pone.0174271.
  • Lee, H. M., D. H. Kim, H. L. Lee, B. Cha, D. H. Kang, and Y. I. Jeong. 2019. Synergistic effect of buthionine sulfoximine on the chlorin e6-based photodynamic treatment of cancer cells. Arch. Pharm. Res. 42 (11):990–99. doi:10.1007/s12272-019-01179-0.
  • Lewandowicz, G. M., P. Britt, A. W. Elgie, C. J. Williamson, H. M. Coley, A. G. Hall, and J. M. Sargent. 2002. Cellular glutathione content, in vitro chemoresponse, and the effect of BSO modulation in samples derived from patients with advanced ovarian cancer. Gynecol. Oncol. 85:298–304. doi:10.1006/gyno.2002.6617.
  • Lewis, S. J., M. Gardner, J. Higgins, J. M. P. Holly, T. R. Gaunt, C. M. Perks, S. D. Turner, S. Rinaldi, S. Thomas, S. Harrison, et al. 2017. Developing the WCRF International/University of Bristol Methodology for identifying and carrying out systematic reviews of mechanisms of exposure–cancer associations. Cancer Epidemiol. Biomarkers Prev. 26(11):1667–75. doi:10.1158/1055-9965.EPI-17-0232.
  • Liaudat, A. C., L. P. Bohl, N. G. Tolosa de Talamoni, B. Maletto, M. C. Pistoresi-Palencia, and G. Picotto. 2014. Oxidative stress, cell cycle arrest and differentiation contribute toward the antiproliferative action of BSO and calcitriol on Caco-2 cells. Anticancer. Drugs 25 (7):810–18. doi:10.1097/CAD.0000000000000109.
  • Li, Q., H. Dong, G. Yang, Y. Song, Y. Mou, and Y. Ni. 2020. Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front Oncol. 10:212. doi:10.3389/fonc.2020.00212.
  • Liebmann, J. E., S. M. Hahn, J. A. Cook, C. Lipschultz, J. B. Mitchell, and D. C. Kaufman. 1993. Glutathione depletion by L-buthionine sulfoximine antagonizes taxol cytotoxicity. Cancer Res. 53 (9):2066–70.
  • Li, Y., R. W. Farmer, Y. Yang, and R. C. Martin. 2016. Epithelial cell adhesion molecule in human hepatocellular carcinoma cell lines: A target of chemoresistence. BMC Cancer 16 (1):228. doi:10.1186/s12885-016-2252-y.
  • Lippmann, J., K. Petri, S. Fulda, and J. Liese. 2020. Redox modulation and induction of ferroptosis as a new therapeutic strategy in hepatocellular carcinoma. Transl. Oncol. 13:100785. doi:10.1016/j.tranon.2020.100785.
  • Liu, B., Y. Bian, M. Yuan, Y. Zhu, S. Liu, H. Ding, S. Gai, P. Yang, Z. Cheng, and J. Lin. 2022. L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy. Biomaterals 289:121746. doi:10.1016/j.biomaterials.2022.121746.
  • Liu, M., W. Li, R. Xu, X. Jiang, and A. Liu. 2021. Hollow gold nanoparticles loaded with L-buthionine-sulfoximine as a novel nanomedicine for in vitro cancer cell therapy. null 2021:1–9. doi:10.1155/2021/3595470.
  • Li, Q., X. Yin, W. Wang, M. Zhan, B. Zhao, Z. Hou, and J. Wang. 2016. The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol. Lett. 11:474–80. doi:10.3892/ol.2015.3879.
  • Lorsch, J. R., F. S. Collins, and J. Lippincott-Schwartz. 2014. Cell biology. fixing problems with cell lines. Science 346 (6216):1452–53. doi:10.1126/science.1259110.
  • Luo, Y., P. Yan, X. Li, J. Hou, Y. Wang, and S. Zhou. 2021. pH-Sensitive polymeric vesicles for GOx/BSO delivery and synergetic starvation-ferroptosis therapy of tumor. Biomacromolecules 22 (10):4383–894. doi:10.1021/acs.biomac.1c00960.
  • Maeda, H., H. H. Ohizumi, T. Segawa, Y. Kakehi, O. Ogawa, and A. Kakizuka. 2004. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ. 11:737–46. doi:10.1038/sj.cdd.4401389.
  • Mårtensson, J., A. Jain, E. Stole, W. Frayer, P. A. Auld, and A. Meister. 1991. Inhibition of glutathione synthesis in the newborn rat: A model for endogenously produced oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 88:9360–64. doi:10.1073/pnas.88.20.9360.
  • Meister, A. 1991. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol. Ther. 51:155–94. doi:10.1016/0163-7258(91)90076-x.
  • Militão, G. C. G., I. N. F. Dantas, P. M. P. Ferreira, A. P. N. N. Alves, D. C. Chaves, F. J. Q. Monte, C. Pessoa, M. O. Moraes, and L. V. Costa-Lotufo. 2012. In vitro and in vivo anticancer properties of cucurbitacin isolated from Cayaponia racemosa. Pharm. Biol. 50 (12):1479–87. doi:10.3109/13880209.2012.684691.
  • Mustafa, E. H., H. T. Mahmoud, M. Y. Al-Hudhud, M. Y. Abdalla, I. M. Ahmad, S. R. Yasin, A. Z. Elkarmi, and L. H. Tahtamouni. 2015. 2-deoxy-D-glucose synergizes with doxorubicin or L-buthionine sulfoximine to reduce adhesion and migration of breast cancer cells. Asian Pac. J. Cancer Prev. 16 (8):3213–22. doi:10.7314/APJCP.2015.16.8.3213.
  • Niepel, M., M. Hafner, M. Chung, and P. K. Sorger. 2017. Measuring cancer drug sensitivity and resistance in cultured cells. Curr. Protoc. Chem. Biol. 9 (2):55–74. doi:10.1002/cpch.21.
  • Palomares, T., M. Caramés, I. García-Alonso, and A. Alonso-Varona. 2009. Glutathione modulation reverses the growth-promoting effect of growth factors, improving the 5-fluorouracil Antitumour response in WiDr colon cancer cells. Anticancer Res. 29 (10):3957–65.
  • Peng, L., R. Linghu, D. Chen, J. Yang, X. Kou, X. Z. Wang, Y. Hu, Y. Z. Jiang, and J. Yang. 2017. Inhibition of glutathione metabolism attenuates esophageal cancer progression. Exp. Mol. Med. 49 (4):e318. doi:10.1038/emm.2017.15.
  • Pereira, D. L., A. C. Dos Santos Ferreira, G. P. de Faria, and J. K. Kwee. 2015. Autophagy interplays with apoptosis and cell cycle regulation in the growth inhibiting effect of Trisenox in HEP-2, a laryngeal squamous cancer. Pathol. Oncol. Res. 21 (1):103–11. doi:10.1007/s12253-014-9794-6.
  • Pereira, I. C., I. F. Mascarenhas, V. C. Capetini, P. M. P. Ferreira, M. M. Rogero, and F. L. Torres-Leal. 2022. Cellular reprogramming, chemoresistance, and dietary interventions in breast cancer. Crit. Rev. Oncol. Hematol. 179:103796. doi:10.1016/j.critrevonc.2022.103796.
  • Perillo, B., M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, and A. Migliaccio. 2020. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 52 (2):192–203. doi:10.1038/s12276-020-0384-2.
  • Qin, Z., S. Ou, L. Xu, K. Sorensen, Y. Zhang, D. P. Hu, Z. Yang, W. Y. Hu, F. Chen, and G. S. Prins. 2021. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH–Deficient prostate cancer cells. Chem. Biol. Drug. Des. 97 (5):1059–78. doi:10.1111/cbdd.13826.
  • Révész, L., M. R. Edgren, and A. A. Wainson. 1994. Selective toxicity of buthionine sulfoximine (BSO) to melanoma cells in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 29:403–06. doi:10.1016/0360-3016(94)90298-4.
  • Robinson, N. B., K. Krieger, F. M. Khan, W. Huffman, M. Chang, A. Naik, R. Yongle, I. Hameed, K. Krieger, L. N. Girardi, et al. 2019. The current state of animal models in research: A review. Int. J. Surg. 72:9–13. doi:10.1016/j.ijsu.2019.10.015.
  • Rodríguez-Gómez, I., J. Carmona-Cortés, R. Wangensteen, P. Vargas-Tendero, I. Banegas, A. Quesada, A. M. García-Lora, and F. Vargas. 2014. The pro-oxidant buthionine sulfoximine (BSO) reduces tumor growth of implanted Lewis lung carcinoma in mice associated with increased protein carbonyl, tubulin abundance, and aminopeptidase activity. Tumour Biol. 35 (8):7799–805. doi:10.1007/s13277-014-2046-2.
  • Romero-Canelón, I., M. Mos, and P. J. Sadler. 2015. Enhancement of selectivity of an organometallic anticancer agent by redox modulation. J. Med. Chem. 58 (19):7874–80. doi:10.1021/acs.jmedchem.5b00655.
  • Saikawa, Y., T. Kubota, T. H. Kuo, T. Furukawa, H. Tanino, M. Watanabe, K. Ishibiki, and M. Kitajima. 1993. Enhancement of antitumor activity of cisplatin on human gastric cancer cells in vitro and in vivo by buthionine sulfoximine. Jpn. J. Cancer Res. 84 (7):787–93. doi:10.1111/j.1349-7006.1993.tb02045.x.
  • Sbardelotto, A. B., F. W. A. Barros, B. M. Soares, B. C. Cavalcanti, R. W. R. Sousa, M. P. Costa, O. D. L. Pessoa, C. Pessoa, and P. M. P. Ferreira. 2021. Cellular and biochemical antileukemic mechanisms of the meroterpenoid oncocalyxone a. J. Toxicol. Environ. Health A 84 (3):95–111. doi:10.1080/15287394.2020.1835763.
  • Schneider, E., H. Yamazaki, B. K. Sinha, and K. H. Cowan. 1995. Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation. Br. J. Cancer 71 (4):738–43. doi:10.1038/bjc.1995.144.
  • Siemann, D., and K. Beyers. 1993. In vivo therapeutic potential of combination thiol depletion and alkylating chemotherapy. Br. J. Cancer 68 (6):1071–79. doi:10.1038/bjc.1993.484.
  • Skapek, S. X., O. M. Colvin, O. W. Griffith, G. B. Elion, D. D. Bigner, and H. S. Friedman. 1988. Enhanced melphalan cytotoxicity following buthionine sulfoximine-mediated glutathione depletion in a human medulloblastoma xenograft in athymic mice. Cancer Res. 48 (10):2764–67.
  • Sobhakumari, A., L. Love-Homan, E. V. Fletcher, S. M. Martin, A. D. Parsons, D. R. Spitz, C. M. Knudson, and A. L. Simons. 2012. Simons, Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism. PLoS One 7 (10):e48175. doi:10.1371/journal.pone.0048175.
  • Son, M. H., K. W. Kang, C. H. Lee, and S. G. Kim. 2001. Potentiation of cadmium-induced cytotoxicity by sulfur amino acid deprivation through activation of extracellular signal-regulated kinase1/2 (ERK1/2) in conjunction with p38 kinase or c-jun N-terminal kinase (JNK). Complete inhibition of the potentiated toxicity by U0126 an ERK1/2 and p38 kinase inhibitor. Biochem. Pharmacol. 62 (10):1379–90. doi:10.1016/s0006-2952(01)00780-8.
  • Sreedharan, S., G. Zouganelis, S. J. Drake, G. Tripathi, and A. Kermanizadeh. 2023. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. J. Toxicol. Environ. Health B 26 (1):1–27. doi:10.1080/10937404.2022.2153456.
  • Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3):209–49. doi:10.3322/caac.21660.
  • Sun, G., W. Hu, J. Zhang, and S. Jing. 2012. Study on effect of BSO on esophageal cancer cell line TE-1. Chin. -Ger. J. Clin. Oncol 11 (11):638–43. doi:10.1007/s10330-012-1082-x.
  • Su, L. J., J. H. Zhang, H. Gomez, R. Murugan, X. Hong, D. Xu, F. Jiang, and Z. Y. Peng. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell Longev. 2019:5080843. doi:10.1155/2019/5080843.
  • Vahrmeijer, A. L., J. H. van Dierendonck, J. Schutrups, C. J. van de Velde, and G. J. Mulder. 1999. Potentiation of the cytostatic effect of melphalan on colorectal cancer hepatic metastases by infusion of buthionine sulfoximine (BSO) in the rat: Enhanced tumor glutathione depletion by infusion of BSO in the hepatic artery. Cancer Chemother. Pharmacol. 44 (2):111–16. doi:10.1007/s002800050954.
  • Vesterinen, H. M., E. S. Sena, K. J. Egan, T. C. Hirst, L. Churolov, G. L. Currie, A. Antonic, D. W. Howells, and M. R. Macleod. 2014. Meta-analysis of data from animal studies: A practical guide. J. Neurosci. Meth. 221:92–102. doi:10.1016/j.jneumeth.2013.09.010.
  • Villablanca, J. G., S. L. Volchenboum, H. Cho, M. H. Kang, S. L. Cohn, C. P. Anderson, A. Marachelian, S. Groshen, D. Tsao-Wei, K. K. Matthay, et al. 2016. A phase I new approaches to neuroblastoma therapy study of buthionine sulfoximine and melphalan with autologous stem cells for recurrent/refractory high‐risk neuroblastoma. Pediatr. Blood Cancer. 63(8):1349–56. doi:10.1002/pbc.25994.
  • Vries, R. B. M., C. R. Hooijmans, M. W. Langendam, J. Van Luijk, M. Leenaars, M. Ritskes-Hoitinga, and K. E. Wever. 2015. A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies. Evid-Based Preclin. Med 2 (1):1–9. doi:10.1002/ebm2.7.
  • Wang, Y., H. Lu, D. Wang, S. Li, K. Sun, X. Wan, E. W. Taylor, and J. Zhang. 2012. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase. Toxicol. App. l Pharmacol. 265 (3):342–50. doi:10.1016/j.taap.2012.09.001.
  • Wang, C., J. Wang, X. Pan, S. Yu, M. Chen, Y. Gao, Z. Song, and M. Qiao. 2023. Reversing ferroptosis resistance by MOFs through regulation intracellular redox homeostasis. Asian J. Pharm. Sci. 18 (1):100770. doi:10.1016/j.ajps.2022.11.004.
  • Watanabe, T., H. Sagisaka, S. Arakawa, Y. Shibaya, M. Watanabe, I. Igarashi, K. Tanaka, S. Totsuka, W. Takasaki, and S. Manabe. 2003. A novel model of continuous depletion of glutathione in mice treated with L-buthionine (S,R)-sulfoximine. J. Toxicol. Sci. 28 (5):455–69. doi:10.2131/jts.28.455.
  • Wei, Y., Z. Wang, J. Yang, R. Xu, H. Deng, S. Ma, T. Fang, J. Zhang, and Q. Shen. 2022. Reactive oxygen species/photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism. J. Colloid Interface Sci. 606:1950–65. doi:10.1016/j.jcis.2021.09.160.
  • Whitt, J. D., A. B. Keeton, B. D. Gary, L. A. Sklar, K. Sodani, Z. S. Chen, and G. A. Piazza. 2016. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion. J. Biomed. Res. 30 (2):120–33. doi:10.7555/JBR.30.20150108.
  • Wilding, J. L., and W. F. Bodmer. 2014. Cancer cell lines for drug discovery and development. Cancer Res. 74 (9):2377–84. doi:10.1158/0008-5472.
  • Wu, C., M. Q. Gong, B. Y. Liu, R. X. Zhuo, and S. X. Cheng. 2017. Co-delivery of multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to effectively reverse cancer drug resistance. Colloids. Surf. B Biointerfaces. 149:250–59. doi:10.1016/j.colsurfb.2016.10.029.
  • Yoo, J., S. Jang, C. Park, D. Lee, S. Kwon, and H. Koo. 2020. Lowering glutathione level by buthionine sulfoximine enhances in vivo photodynamic therapy using chlorin e6-loaded nanoparticles. Dyes. Pigment 176:108207. doi:10.1016/j.dyepig.2020.108207.
  • Yu, M., S. K. Selvaraj, M. M. Liang-Chu, S. Aghajani, M. Busse, J. Yuan, G. Lee, F. Peale, C. Klijn, R. Bourgon, et al. 2015. A resource for cell line authentication, annotation and quality control. Nature 520 (7547):307–11. doi:10.1038/nature14397.
  • Zhang, R. X., H. L. Wong, H. Y. Xue, J. Y. Eoh, and X. Y. Wu. 2016. Nanomedicine of synergistic drug combinations for cancer therapy - strategies and perspectives. J. Control Rele. 240:489–503. doi:10.1016/j.jconrel.2016.06.012.
  • Zhao, Y., S. Tanaka, B. Yuan, K. Sugiyama, K. Onda, A. Kiyomi, N. Takagi, M. Sugiura, and T. Hirano. 2019. Arsenic disulfide combined with l-buthionine-(s, r)-sulfoximine induces synergistic antitumor effects in two-dimensional and three-dimensional models of mcf-7 breast carcinoma cells. Am. J. Chin. Med. 47 (05):1149–70. doi:10.1142/S0192415X19500599.
  • Zhong, H., P. Y. Huang, P. Yan, P. L. Chen, Q. Y. Shi, Z. A. Zhao, J. X. Chen, X. Shu, P. Wang, B. Yang, et al. 2021. Versatile nanodrugs containing glutathione and heme oxygenase 1 inhibitors enable suppression of antioxidant defense system in a two-pronged manner for enhanced photodynamic therapy. Adv. Health. Mater. 10(19):e2100770. doi:10.1002/adhm.202100770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.