1,435
Views
32
CrossRef citations to date
0
Altmetric
Technical Papers

Carbon nanotubes among diesel exhaust particles: real samples or contaminants?

, , &
Pages 1199-1204 | Published online: 17 Sep 2013

References

  • Abdul-Khalek , I. , Kittelson , D.B. and Brear , F. 1999 . The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements , SAE Technical Paper Series 1999-01-1142 . doi: 10.4271/1999-01-1142
  • Cheng , H.M. Li , F. 1998 . Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons . Appl. Phys. Lett , 72 : 3282–3284 doi: 10.1063/1.121624
  • Evelyn , A. Mannick , S. 2003 . Unusual carbon-based nanofibers and chains among diesel-emitted particles . Nano Lett , 3 : 63 – 64 . doi: 10.1021/nl025803u
  • Gidney , J.T. , Twigg , M.V. and Kittelson , D.B. 2010 . Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car . Environ. Sci. Technol , 44 : 2562 – 2569 . doi: 10.1021/es901868c
  • Hafner , J.H. Bronikowski , M.J. 1998 . Catalytic growth of single-wall carbon nanotubes from metal particles . Chem. Phys. Lett , 296 : 195 – 202 . doi: 10.1016/S0009-2614(98)01024-0
  • Harris , P.J.F. 2001 . Carbonaceous contaminants on support films for transmission electron microscopy . Carbon , 39 : 909 – 913 . doi: 10.1016/S0008-6223(00)00195-0
  • Height , M.J. Howard , J.B. 2004 . Flame synthesis of single-walled carbon nanotubes . Carbon , 42 : 2295 – 307 . doi: 10.1016/j.carbon.2004.05.010
  • Hering , S.V. , Friedlander , S.K. , Collins , J.J. and Richard , L.W. 1979 . Design and evaluation of a new low-pressure impactor. 2 . Environ. Sci. Technol , 13 : 184 – 188 . doi: 10.1021/es60150a009
  • Journet , C. Maser , W.K. 1997 . Large-scale production of single-walled carbon nanotubes by electric-arc technique . Nature , 388 : 756 – 758 . doi: 10.1038/41972
  • Jung , H. , Kittelson , D.B. and Zachariah , M.R. 2004 . Kinetics and visualization of soot oxidation using transmission electron microscopy . Combust. Flame , 136 : 445 – 456 . doi: 10.1016/j.combustflame.2003.10.013
  • Kasper , M. , Sattler , K. , Siegmann , K. , Matter , U. and Siegmann , H.C. 1999 . The influence of fuel additives on the formation of carbon during combustion . J. Aerosol Sci , 30 : 217–225 doi: 10.1016/S0021-8502(98)00034-2
  • Klie , R.F. , Ciuparu , D. , Pfefferle , L. and Zhu , Y. 2004 . Multi-walled carbon nanotubes on amorphous carbon films . Carbon , 42 : 1953 – 1957 . doi: 10.1016/j.carbon.2004.03.029
  • Lagally , C.D. , Reynolds , C.C.O. , Grieshop , A.P. , Kandlikar , M. and Rogak , S.N. 2012 . Carbon nanotube and fullerene emissions from spark-ignited engines . Aerosol Sci. Technol , 46 : 156 – 164 . doi: 10.1080/02786826.2011.617399
  • Lam , C.-W.J. , John , T. , McCluskey , R. , Arepalli , S. and Hunter , R.L. 2006 . A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks . Crit. Rev. Toxicol , 36 : 189 – 217 . doi: 10.1080/10408440600570233
  • Merchan-Merchan , W. Saveliev , A. 2002 . Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts . Chem. Phys. Lett , 354 : 20 – 24 . doi: 10.1016/S0009-2614(02)00027-1
  • Miller , A. Ahlstrand , G. 2007 . The fate of metal (Fe) during diesel combustion: Morphology, chemistry, and formation pathways of nanoparticles . Combust Flame , 149 : 129 – 143 . doi: 10.1016/j.combustflame.2006.12.005
  • Miller , A.L. , Frey , G. , King , G. and Sunderman , C. 2010 . A handheld electrostatic precipitator for sampling airborne particles and nanoparticles . Aerosol Sci. Technol , 44 : 417 – 427 . doi: 10.1080/02786821003692063
  • Miller , A.L. Stipe , C. 2007 . Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine . Environ. Sci. Technol , 41 : 6828 – 6835 . doi: 10.1021/es070999r
  • Murr , L. E. Soto , K.F. 2006 . Combustion-generated nanoparticulates in the El Paso, TX, USA/Juarez, Mexico metroplex: Their comparative characterization and potential for adverse health effects . Int. J. Environ. Res. Public Health , 3 : 48 – 66 . doi: 10.3390/ijerph2006030007
  • Nikolaev , P. 2004 . Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process . J. Nanosci. Nanotechnol , 4 : 307 – 316 . doi: 10.1166/jnn.2004.066
  • Okada , S. Kweon , C.-B. 2003 . Measurement of Trace Metal Compostion in Diesel Engine Particulate and Its Potential for Determining Oil Consumption , SAE Technical Paper Series 2003-01-0076 . doi: 10.4271/2003-01-0076
  • Porter , D. W. Hubbs , A.F. 2010 . Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes . Toxicology , 269 ( 2–3 ) : 136 – 147 .
  • Sen , S. and Puri , I.K. 2004 . Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles . Nanotechnology , 15 : 264 – 268 . doi: 10.1088/0957-4484/15/3/005
  • Skillas , G. , Qian , Z. , Baltensperger , U. , Matter , U. and Burtscher , H. 2000 . The influence of additives on the size distribution and composition of particles produced by diesel engines . Combust. Sci , 154 : 259 – 273 . doi: 10.1080/00102200008947279
  • Su , M. Zheng , B. 2000 . A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity . Chem. Phys. Lett , 322 : 321 – 326 . doi: 10.1016/S0009-2614(00)00422-X
  • Thess , A. Lee , R. 1996 . Crystalline rope of metallic carbon nanotubes . Science , 273 : 483 – 487 . doi: 10.1126/science.273.5274.483
  • Uchida , T. Ohashi , O. 2006 . Synthesis of single-wall carbon nanotubes from diesel soot . Japn. J. Appl. Phys. Part 1 , 45 ( 10A ) : 8027 – 8029 . doi: 10.1143/JJAP.45.8027
  • Vander Wal , R. 2002 . Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment . Combust. Flame , 130 : 37 – 47 . doi: 10.1016/S0010-2180(02)00360-7
  • Vander Wal , R. Berger , G.M. 2003 . Carbon nanotube synthesis in a flame with independently prepared laser-ablated catalyst particles . J. Nanosci. Nanotechnol , 3 : 241 – 245 . doi: 10.1166/jnn.2003.201
  • Yuan , L. Saito , K. 2001 . Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes . Chem. Phys. Lett , 346 : 23 – 28 . doi: 10.1016/S0009-2614(01)00959-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.