803
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

An integrated simulation and optimization approach for managing human health risks of atmospheric pollutants by coal-fired power plants

, , , , , & show all
Pages 704-720 | Received 11 Sep 2013, Accepted 20 Dec 2013, Published online: 20 May 2014

References

  • Abdul-Wahab, S., A. Sappurd, and A. Al-Damkhi. 2011. Application of California Puff (CALPUFF) model: A case study for Oman. Clean Technol. Environ. Policy 13:177–189. doi:10.1007/s10098-010-0283-7
  • Alessandrini, S., E. Ferrero, C. Pertot, and S. Trini Castelli. 2010. Turbulence closure in atmospheric circulation model and its influence on the dispersion. Int. J. Environ. Pollut. 40:36–48. doi:10.1504/IJEP.2010.030881
  • Aly, A.H., and R.C. Peralta. 1999. Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems. Water Resources Res. 35:2415–2425. doi:10.1029/1998WR900128
  • BAD. 2013. Beijing Administrative Division. http://www.xzqh.org/html/list/10002.html ( accessed July 20, 2013).
  • BMBS. 2012. Beijing Statistical Yearbook. Beijing, China: Beijing Municipal Bureau of Statistics (in Chinese).
  • Cai, Y., G. Huang, Z. Yang, and Q. Tan. 2009. Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl. Energy 86:480–495. doi:10.1016/j.apenergy.2008.09.025
  • Campbell, C. 2002. Kernel methods: A survey of current techniques. Neurocomputing 48:63–84. doi:10.1016/S0925-2312(01)00643-9
  • Carruthers, D., H. Edmunds, M. Bennett, P. Woods, M. Milton, R. Robinson, B. Underwood, C. Franklin, and R. Timmis. 1997. Validation of the ADMS dispersion model and assessment of its performance relative to R-91 and ISC using archived LIDAR data. Int. J. Environ. Pollut. 8: 3–4.
  • Chakraborty, A., and M. Chakraborty. 2012. Multi criteria genetic algorithm for optimal blending of coal. Opsearch 49: 386–399. doi:10.1007/s12597-012-0089-y
  • Chapelle, O., and V. Vapnik. 1999. Model selection for support vector machines. Adv. Neural Information Process. Systems 12:230–236.
  • Chen, S.C., and C.M. Liao. 2006. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 366: 112–123. doi:10.1016/j.scitotenv.2005.08.047
  • Cheng, S., J. Li, B. Feng, Y. Jin, and R. Hao. 2007. A Gaussian-box modeling approach for urban air quality management in a northern chinese city—I. Model development. Water Air Soil Pollut. 178:37–57. doi:10.1007/s11270-006-9120-3
  • Cherkassky, V., and Y. Ma. 2004. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17:113–126. doi:10.1016/S0893-6080(03)00169-2
  • Cimorelli, A.J., S.G. Perry, A. Venkatram, J.C. Weil, R.J. Paine, R.B. Wilson, R.F. Lee, W.D. Peters, and R.W. Brode. 2005. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteorol. 44: 682–693. doi:10.1175/JAM2227.1
  • Cui, Y. 2008. Application of simulated annealing particle swarm optimization algorithm in power coal blending optimization. International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, Dalian, China, October 12–14, pp. 1–4.
  • Dai, C., Y. Li, and G. Huang. 2011. A two-stage support-vector-regression optimization model for municipal solid waste management–A case study of Beijing, China. J. Environ. Manage. 92: 3023–3037. doi:10.1016/j.jenvman.2011.06.038
  • Davis, L. 1991. Handbook of Genetic Algorithms. New York, NY: Van Nostrand Reinhold.
  • Elbir, T., N. Mangir, M. Kara, S. Simsir, T. Eren, and S. Ozdemir. 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmos. Environ. 44: 441–454. doi:10.1016/j.atmosenv.2009.11.008
  • Erarslan, K., H. Aykul, H. Akçakoca, and N. Çetin. 2001. Optimum blending of coal by linear programming for the power plant at seyitömer voal mine. 17th International Mining Congress and Exhibition of Turkey, Ankara, Turkey, June 19–22, pp. 719–722.
  • Gao, Z., and L. Bian. 2004. Estimation of aerodynamic roughness length and displacement height of an urban surface from single-level sonic anemometer data. Austr. Meteorol. Mag. 53: 2–28.
  • Goldberg, D.E. 1989. Genetic algorithms in search, optimization, and machine learning. Machine Learning 3: 95–99.
  • Guo, X.J., M. Chen, and J.W. Wu. 2009. Coal blending optimization of coal preparation production process based on improved GA. Proc. Earth Planet. Sci. 1:654–660.
  • Hao, J., L. Wang, M. Shen, L. Li, and J. Hu. 2007. Air quality impacts of power plant emissions in Beijing. Environ. Pollut. 147:401–408. doi:10.1016/j.envpol.2006.06.013
  • He, L., G.-H. Huang, G.-M. Zeng, and H.-W. Lu. 2008a. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. Water Res. 42:2629–2639. doi:10.1016/j.watres.2008.01.012
  • He, L., G. Huang, and H. Lu. 2008b. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Adv. Water Resources 31:1622–1635. doi:10.1016/j.advwatres.2008.07.009
  • Huang, Y., J. Li, G. Huang, A. Chakma, and X. Qin. 2003. Integrated simulation-optimization approach for real-time dynamic modeling and process control of surfactant-enhanced remediation at petroleum-contaminated sites. Pract. Period. Hazard. Toxic Radioactive Waste Manage. 7: 5–105. doi:10.1061/(ASCE)1090-025X(2003)7:2(95)
  • Huntington, D., and C. Lyrintzis. 1998. Improvements to and limitations of Latin hypercube sampling. Prob. Eng. Mechan. 13:245–253. doi:10.1016/S0266-8920(97)00013-1
  • Iman, R.L., J. Campbell, and J. Helton. 1981. An approach to sensitivity analysis of computer models. I- Introduction, input, variable selection and preliminary variable assessment. J. Qual. Technol. 13:174–183.
  • Jin, S., and K. Demerjian. 1993. A photochemical box model for urban air quality study. Atmos. Environ. Part B Urban Atmos. 27:371–387. doi:10.1016/0957-1272(93)90015-X
  • Knoth, O., and R. Wolke. 1998. An explicit–implicit numerical approach for atmospheric chemistry—Transport modeling. Atmos. Environ. 32: 1785–1797. doi:10.1016/S1352-2310(97)00476-7
  • Kulkarni, A., V. Jayaraman, and B. Kulkarni. 2004. Support vector classification with parameter tuning assisted by agent-based technique. Comput. Chem. Eng. 28:311–318. doi:10.1016/S0098-1354(03)00188-1
  • Lall, U., Y.I. Moon, H.H. Kwon, and K. Bosworth. 2006. Locally weighted polynomial regression: Parameter choice and application to forecasts of the Great Salt Lake. Water Resources Res. 42:1–11. doi:10.1029/2004WR003782
  • Lewis, A.S., K.R. Reid, M.C. Pollock, and S.L. Campleman. 2012. Speciated arsenic in air: Measurement methodology and risk assessment considerations. J. Air Waste Manage. Assoc. 62:2–17. doi:10.1080/10473289.2011.608620
  • Li, J., G.H. Huang, G. Zeng, I. Maqsood, and Y. Huang. 2007. An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination. J. Environ. Manage. 82:173–188. doi:10.1016/j.jenvman.2005.12.018
  • Liao, C., and M. Ling. 2003. Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Arch. Environ. Contam. Toxicol. 45:264–272. doi:10.1007/s00244-003-0107-4
  • Liao, C.M., and K.C. Chiang. 2006. Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere 63:1610–1619. doi:10.1016/j.chemosphere.2005.08.051
  • Liao, K.J., P. Amar, E. Tagaris, and A.G. Russell. 2012. Development of risk-based air quality management strategies under impacts of climate change. J. Air Waste Manage. Assoc. 62:557–565. doi:10.1080/10962247.2012.662928
  • Liao, Y., C. Wu, and X. Ma. 2005. New hybrid optimization model for power coal blending, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, IEEE, Guangzhou, China, August 18–21, pp. 4023–4027.
  • Lin, G.-F., G.-R. Chen, P.-Y. Huang, and Y.-C. Chou. 2009. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. J. Hydrol. 372:17–29. doi:10.1016/j.jhydrol.2009.03.032
  • Lin, S.-W., Z.-J. Lee, S.-C. Chen, and T.-Y. Tseng. 2008. Parameter determination of support vector machine and feature selection using simulated annealing approach. Appl. Soft Comput. 8:1505–1512. doi:10.1016/j.asoc.2007.10.012
  • Liu, C.M. 2008. A blending and inter-modal transportation model for the coal distribution problem. Int. J. Operations Res. 5:107–116.
  • Liu, C.M., and H.D. Sherali. 2000. A coal shipping and blending problem for an electric utility company. Omega 28:433–444. doi:10.1016/S0305-0483(99)00067-5
  • Liu, Y., G. Huang, Y. Cai, G. Cheng, Y. Niu, and K. An. 2009. Development of an inexact optimization model for coupled coal and power management in North China. Energy Policy 37:4345–4363. doi:10.1016/j.enpol.2009.05.050
  • Lu, W.-Z., and W.-J. Wang. 2005. Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 59:693–701. doi:10.1016/j.chemosphere.2004.10.032
  • Mensink, C., K. De Ridder, N. Lewyckyj, L. Delobbe, L. Janssen, and P. Van Haver. 2001. Computational aspects of air quality modelling in urban regions using an optimal resolution approach (AURORA). In Large-scale scientific computing, 299–308. Berlin: Springer.
  • NAAQS. 2013. National Ambient Air Quality Standards. http://www.epa.gov/air/criteria.html ( accessed August 10, 2013).
  • Noori, R., M. Abdoli, A.A. Ghasrodashti, and M. Jalili Ghazizade. 2009a. Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad. Environ. Prog. Sustain. Energy 28:249–258. doi:10.1002/ep.10317
  • Noori, R., A. Karbassi, A. Farokhnia, and M. Dehghani. 2009b. Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques. Environ. Eng. Sci. 26: 1503–1510. doi:10.1089/ees.2008.0360
  • Oettl, D., P. Sturm, and R. Almbauer. 2005. Evaluation of GRAL for the pollutant dispersion from a city street tunnel portal at depressed level. Environ. Model. Software 20:499–504. doi:10.1016/j.envsoft.2004.06.001
  • Olesen, H.R., R. Berkowicz, M. Ketzel, and P. Løfstrøm. 2009. Validation of OML, AERMOD/PRIME and MISKAM using the Thompson wind-tunnel dataset for simple stack-building configurations. Boundary-Layer Meteorol. 131:73–83. doi:10.1007/s10546-009-9355-9
  • Pai, P.-F., and W.-C. Hong. 2005. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion Manage. 46:2669–2688. doi:10.1016/j.enconman.2005.02.004
  • Peralta, R.C., H. Azarmnia, and S. Takahashi. 1991. Embedding and response matrix techniques for maximizing steady-state ground-water extraction: Computational comparison. Ground Water 29:357–364. doi:10.1111/j.1745-6584.1991.tb00526.x
  • Qin, X., G. Huang, and Y. Li. 2008. Risk management of BTEX contamination in ground water—An integrated fuzzy approach. Ground Water 46:755–767. doi:10.1111/j.1745-6584.2008.00464.x
  • Ranzato, L., A. Barausse, A. Mantovani, A. Pittarello, M. Benzo, and L. Palmeri. 2012. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF. Atmos. Environ. 61:570–579. doi:10.1016/j.atmosenv.2012.08.009
  • Sakulniyomporn, S., K. Kubaha, and C. Chullabodhi. 2011. External costs of fossil electricity generation: health-based assessment in Thailand. Renew. Sustain. Energy Rev. 15:3470–3479. doi:10.1016/j.rser.2011.05.004
  • Schuhmacher, M., J.L. Domingo, and J. Garreta. 2004. Pollutants emitted by a cement plant: health risks for the population living in the neighborhood. Environ. Res. 95:198–206. doi:10.1016/j.envres.2003.08.011
  • Schuhmacher, M., M. Meneses, A. Xifró, and J.L. Domingo. 2001. The use of Monte-Carlo simulation techniques for risk assessment: Study of a municipal waste incinerator. Chemosphere 43:787–799. doi:10.1016/S0045-6535(00)00435-5
  • Scire, J.S., F.R. Robe, M.E. Fernau, and R.J. Yamartino. 2000a. A User’s Guide for the CALMET Meteorological Model. Earth Tech, Concord, MA, USA. http://www.src.com(accessed February 25, 2013).
  • Scire, J.S., D.G. Strimaitis, and R.J. Yamartino. 2000b. A User’s Guide for the CALPUFF Dispersion Model, 521. Earth Tech, Inc, Concord, MA, USA. http://www.src.com (accessed February 25, 2013).
  • Senior, C.L., W. Morris, and T.A. Lewandowski. 2013. Emissions and risks associated with oxyfuel combustion: State of the science and critical data gaps. J. Air Waste Manage. Assoc. 63:832–843. doi:10.1080/10962247.2013.791892
  • Smola, A.J., and B. Schölkopf. 2004. A tutorial on support vector regression. Stat. Comput. 14:199–222. doi:10.1023/B:STCO.0000035301.49549.88
  • Song, Y., M. Zhang, and X. Cai. 2006. PM10 modeling of Beijing in the winter. Atmos. Environ. 40:4126–4136. doi:10.1016/j.atmosenv.2006.03.014
  • Stern, R., and R. Yamartino. 2004. Evaluation and further application of the micro-scale photochemical model MICRO-CALGRID. In Air Pollution Modeling and Its Application XIV, 605–612. New York: Springer.
  • Tan, Q., G.H. Huang, and Y. Cai. 2010. A superiority-inferiority-based inexact fuzzy stochastic programming approach for solid waste management under uncertainty. Environ. Model. Assess. 15: 381–396. doi:10.1007/s10666-009-9214-6
  • Thissen, U., M. Pepers, B. Üstün, W. Melssen, and L. Buydens. 2004. Comparing support vector machines to PLS for spectral regression applications. Chemometrics Intelligent Lab. Systems 73:169–179. doi:10.1016/j.chemolab.2004.01.002
  • Tian, H.Z., Y. Wang, K. Cheng, Y.P. Qu, J.M. Hao, Z.G. Xue, and F.H. Chai. 2012. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. J. Air Waste Manage. Assoc. 62:576–586. doi:10.1080/10962247.2012.663733
  • Tzeng, Y. 2002. Discussion on the efficiency of automatic classification based on file subject. J. China Soc. Library Sci. 68:62–83.
  • U.S. Environmental Protection Agency. 1986. Guidelines for the health risk assessment of chemical mixtures. Fed. Reg. 51:34014–34025.
  • U.S. Environmental Protection Agency. 1999. Integrated risk information system (IRIS). EPA. http://www.epa.gov/iris ( accessed July 20, 2013).
  • U.S. Environmental Protection Agency. 2008. Clarification of regulatory status of CALPUFF for near-field applications. U.S. Environmental Protection Agency, Research Triangle Park, NC.
  • Vapnik, V.N. 1999. An overview of statistical learning theory. IEEE Trans. Neural Networks 10:988–999. doi:10.1109/72.788640
  • Vieira de Melo, A.M., J.M. Santos, I. Mavroidis, and N.C. Reis, Jr. 2012. Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. Building Environ. 56: 8–20. doi:10.1016/j.buildenv.2012.02.017
  • Zemba, S.G., L.C. Green, E.A. Crouch, and R.R. Lester. 1996. Quantitative risk assessment of stack emissions from municipal waste combustors. J. Hazard. Mater. 47: 229–275. doi:10.1016/0304-3894(95)00115-8
  • Zhou, Y., J.I. Levy, J.K. Hammitt, and J.S. Evans. 2003. Estimating population exposure to power plant emissions using CALPUFF: A case study in Beijing, China. Atmos. Environ. 37:815–826. doi:10.1016/S1352-2310(02)00937-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.