2,425
Views
9
CrossRef citations to date
0
Altmetric
Technical Papers

Analysis and discussion on formation and control of primary particulate matter generated from coal-fired power plants

&
Pages 1342-1351 | Received 04 Mar 2014, Accepted 29 Jul 2014, Published online: 14 Nov 2014

References

  • Bakke, E. 1975. Wet electrostatic precipitators for control of submicron particles. J. Air Pollut. Control Assoc. 25(2): 163–167. doi:10.1080/00022470.1975.10470067
  • Bakke, E. 1976. U.S. Patent 3,958,961.
  • Biswas, P., and C.Y. Wu. 1998. Control of toxic metal emissions from combustors using sorbents: a review. J. Air Waste Manage. Assoc. 48(2): 113–127. doi:10.1080/10473289.1998.10463657
  • Chang, R. 1992. U.S. Patent 5,158,580.
  • Davidson, C.I., R.F. Phalen, and P.A. Solomon. 2005. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 39(8): 737–749. doi:10.1080/02786820500191348
  • Denser, H.W., and E. Neumann. 1949. Industrial sonic agglomeration and collection systems. Ind. Eng. Chem. 41(11): 2439–2442. doi:10.1021/ie50479a023
  • Fix, G., W. Seames, M. Mann, S. Benson, and D. Miller. 2013. The effect of combustion temperature on coal ash fine-fragmentation mode formation mechanisms. Fuel 113:140–147. doi:10.1016/j.fuel.2013.05.096
  • Filter Media Consulting, Inc. 1997. Concept with a future: COHPAC. Filtr. Sep. 34(2): 137, 139. doi:10.1016/S0015-1882(97)84806-9
  • Flagan, R.C., and S.K. Friedlander. 1978. Particle formation in pulverized coal combustion: A review. Recent Development in Aerosol Science. New York: Wiley-Interscience.
  • Gale, T.K., and J.O.L. Wendt. 2002. High-temperature interactions between multiple-metals and kaolinite. Combust. Flame 131:299–307. doi:10.1016/S0010-2180(02)00404-2
  • Gallego-Juarez, J.A., E. Riera-Franco de Sarabia, G. Rodriguez-Corral, T.L. Hoffmann, J.C. Galvez-Moraleda, J.J. Rodriguez-Maroto, F.J. Gomez-Moreno, A. Bahillo-Ruiz, and M. Martin-Espigares. 1999. Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Environ. Sci. Technol. 33(21): 3843–3849. doi:10.1021/es990002n
  • Goto, S., K. Masuda, M. Nakanura, M. Sueyoshi, T. Future, Y. Uchida, and H. Hatazaki. 2009a. A study of coal type selection for a coal fired power plant considering coal and fly ash properties. Int. J. Innov. Comput. Information Control 5(1): 215–223.
  • Goto, S., S. Katafuchi, M. Sueyoshi, T. Future, Y. Uchida, H. Hatazaki, and M. Nakanura. 2009b. Coal type selection for thermal power plants through combustion state estimation. Paper presented at the ICCAS-SICE International Joint Conference, Fukuoka, Japan, August 18–21.
  • Guo, X., A. Lv, and F. Xiao. 2012. The research on design parameters of fan mill direct pulverizing system. Energy Procedia 17( Part B): 1620–1626. doi:10.1016/j.egypro.2012.02.289
  • Hinds, W.C. 1982. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York, NY: John Wiley & Sons.
  • Hoffmann, T.L. 1997. An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect. J. Aerosol Sci. 28(6): 919–936. doi:10.1016/S0021-8502(96)00489-2
  • Hoffmann, T.L. 2000. Environmental implications of acoustic aerosol agglomeration. Ultrasonics 38(1–8): 353–357. doi:10.1016/S0041-624X(99)00184-5
  • Huang, Y., B. Jin, Z. Zhong, R. Xiao, Z. Tang, and H. Ren. 2004. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Fuel Process. Technol. 86(1): 23–32. doi:10.1016/j.fuproc.2003.10.022
  • Huggins, F.E., N. Shah, and G.P. Huffman, A. Kolker, S. Crowley, C.A. Palmer, and R.B. Finkelman. 2000. Mode of occurrence of chromium in four US coals. Fuel Process. Technol. 63(2–3): 79–92. doi:10.1016/S0378-3820(99)00090-9
  • Iveson, S.M., J.D. Litster, K. Hapgood, and B.J. Ennis. 2001. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 117(1–2): 3–39. doi:10.1016/S0032-5910(01)00313-8
  • Jena, M.S., S.K. Biswal, and M.V. Rudramuniyappa. 2008. Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal. Int. J. Miner. Process. 87(1–2): 42–50. doi:10.1016/j.minpro.2008.01.004
  • Jimenez, A., M.J. Iglesias, F. Laggoun-Defarge, and I. Suarez-Ruiz. 1998. Study of physical and chemical properties of vitrinite. Inferences on depositional and coalification controls. Chem. Geol. 150(3–4): 197–221. doi:10.1016/S0009-2541(98)00048-5
  • Kumar, P., and P. Biswas. 2005. Analytical expressions of the collision frequency function for aggregation of magnetic particles. J. Aerosol Sci. 36(4): 455–469. doi:10.1016/j.jaerosci.2004.10.008
  • Kumar, K.S., and A. Mansour. 1998. A review of recent developments in particulate control in the copper and nickel industry. Paper presented at the 1998 TMS Annual Meeting, San Antonio, TX, February 16–19.
  • Li, Y.W., C.S. Zhao, X. Wu, D.F. Lu, and S. Han. 2007a. Aggregation mechanism of fine fly ash particles in uniform magnetic field. Korean J. Chem. Eng. 24(2): 319–327. doi:10.1007/s11814-007-5053-9
  • Li, Y.W., X. Wu, C.S. Zhao, D.F. Lu, and S. Han. 2007b. Experimental study on aggregation of PM10 from coal combustion by magnetic seeding in uniform magnetic field [in Chinese]. Proc. Chin. Soc. Electr. Eng. 27:23–28.
  • Lighty, J.S., J.M. Veranth, and A.F. Sarofim. 2000. Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manage. Assoc. 50(9):1565–1618. doi:10.1080/10473289.2000.10464197
  • Linak, W.P. 1995. Sorbent capture of nickel, lead, and cadmium in a laboratory swirl flame incinerator. Combust. Flame 100(1–2): 241–250. doi:10.1016/0010-2180(94)00073-2
  • Linak, W.P., C.A. Miller, and J.O.L. Wendt. 2000. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. J. Air Waste Manage. Assoc. 50(8): 1532–1544. doi:10.1080/10473289.2000.10464171
  • Liu, G., H. Wu, R.P. Gupta, J.A. Lucas, A.G. Tate, and T.F. Wall. 2000. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel 79(6): 627–633. doi:10.1016/S0016-2361(99)00186-6
  • Liu, J., C. Zheng, H. Zeng, J. Zhang, and X. Lu. 2003a. Effects of solid adsorbents on the emission of heavy metals during coal combustion [in Chinese]. J. Environ. Sci. 24(5): 23–27.
  • Liu, J.Z., H. Fan, J. Zhou, X. Cao, and K. Cen. 2003b. Experimental studies on the emission of PM10 and PM2.5 from coal-fired boiler [in Chinese]. Proc. Chin. Soc. Electr. Eng. 23(1): 145–149.
  • Liu, J., G. Zhang, J. Zhou, J. Wang, W. Zhao, and K. Cen. 2009. Experimental study of acoustic agglomeration of coal-fired fly ash particles at low frequencies. Powder Technol. 193(1): 20–25. doi:10.1016/j.powtec.2009.02.002
  • Lu, J.Y., and D.K. Li. 2006a. Emission features of primary particulate matters after different pulverized coals combustion [in Chinese]. J. Combust. Sci. Technol. 12(6): 514–518.
  • Lu, J.Y., and D.K. Li. 2006b. Study of the effect of CaO addition on primary particle characteristics after pulverized coal combustion [in Chinese]. J. Eng. Therm. Energy Power 21(4): 373–377.
  • Lu, J.Y., and D.K. Li. 2007a. Study on primary PM features influenced by pulverized coal combustion at different burning temperature [in Chinese]. Proc. Chin. Soc. Electr. Eng. 27(20): 24–29.
  • Lu, J.Y., and D.K. Li. 2007b. Coal fineness effect on primary particulate matter features during pulverized coal combustion [in Chinese]. J. Environ. Sci. 28(9): 1944–1948.
  • Lu, J.Y., and D.K. Li. 2008. Influence of burning time on primary particulate matter features during pulverized coal combustion [in Chinese]. J. Combust. Sci. Technol. 14(1): 55–60.
  • McElroy, M.W., R.C. Carr, D.S. Ensor, and G.R. Markowski. 1982. Distribution of fine particles from coal combustion. Science. 215:13–19. doi:10.1126/science.215.4528.13
  • Ministry of Environment Protection of China. 2011. Emission Standard of Air Pollutants for Thermal Power Plants GB13223—2011. Beijing: Ministry of Environment Protection of China. http://www.zhb.gov.cn.
  • Miller, S.J., G.L. Schelkoph, G.E. Dunham, K. Walker, and H. Krigmont. 1997. Advanced hybrid particulate collector, A new concept for air toxics and fine-particle control. Paper presented at the Advanced Coal-Based Power and Environmental Systems ’97 Conference, Pittsburgh, PA, July 22–24.
  • National Bureau of Statistics of China. 2006. China statistical yearbook 2006. Beijing, China: China Statistics Press.
  • National Bureau of Statistics of China. 2011. China Statistical Yearbook 2011. Beijing, China: China Statistics Press.
  • Ninomiya, Y., L. Zhang, A. Sato, and Z. Dong. 2004. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Process. Technol. 85(8–10): 1065–1088. doi:10.1016/j.fuproc.2003.10.012
  • Pope, C.A. III, and D.W. Dockery. 2006. Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manage. Assoc. 56(6): 709–742. doi:10.1080/10473289.2006.10464485
  • Raask, E. 1985. Mineral impurities in coal combustion: behavior, problems and remedial measures. New York, NY: Hemisphere.
  • Rambali, B., L. Baert, D. Thone, and D.L. Massart. 2001a. Using experimental design to optimize the process parameters in fluidized bed granulation. Drug Dev. Ind. Pharm. 27(1): 47–55. doi:10.1081/DDC-100000127
  • Rambali, B., L. Baert, and D.L. Massart. 2001b. Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale. Int. J. Pharm. 220(1–2): 149–160. doi:10.1016/S0378-5173(01)00658-5
  • Riera-Franco de Sarabia, E., J.A. Gallego-Juarez, G. Rodriguez-Corral, L. Elvia-Segura, and I. Gonzalez-Gomez. 2000. Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics 38(1–8): 642–646. doi:10.1016/S0041-624X(99)00129-8
  • Saiyasitpanich, P., T.C. Keener, S.J. Khang, and M. Lu. 2007. Removal of diesel particulate matter (DPM) in a tubular wet electrostatic precipitator. J. Electrostat. 65(10–11):618–624. doi:10.1016/j.elstat.2007.01.005
  • Sarofim, A.F., J.B. Howard, and A.S. Padia. 1977. The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combust. Sci. Technol. 16(3–6): 187–204. doi:10.1080/00102207708946804
  • Schwartz, J., D.W. Dockery, and L.M. Neas. 1996. Is daily mortality associated specifically with fine particles? J Air Waste Manage. Assoc. 46(10): 927–939. doi:10.1080/10473289.1996.10467528
  • Seames, W.S. 2000. The partitioning of trace elements during pulverized coal combustion. PhD dissertation, Chemical and Environmental Engineering, University of Arizona, Tucson, AZ.
  • Seames, W.S. 2003. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Process. Technol. 81(2): 109–125. doi:10.1016/S0378-3820(03)00006-7
  • Senior, C.L., J.J. Helble, and A.F. Sarofim. 2000. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Process. Technol. 6566:263–288. doi:10.1016/S0378-3820(00)00082-5
  • Shoji, T., F.E. Huggins, and G.P. Huffman, W.P. Linak, and C.A. Miller. 2002. XAFS spectroscopy analysis of selected elements in fine particulate matter derived from coal combustion. Energy Fuels. 16(2): 325–329. doi:10.1021/ef010200b
  • Smolik, J., J. Schwaz, V. Vesely, I. Sykorova, J. Kucera, and V. Havranek. 2000. Influence of calcareous sorbents on particulate emissions from fluidized bed combustion of lignite. Aerosol Sci. Technol. 33(6): 544–556. doi:10.1080/02786820050195386
  • Staehle, R.C., R.J. Triscori, K.S. Kumar, G. Ross, and R. Cothron. 2003. Wet electrostatic precipitators for high efficiency control of fine particulates and sulfuric acid mist. Paper presented at the Institute of Clean Air Companies (ICAC) Forum, Nashville, TN, October 14–15.
  • Tucker, W.G. 2000. An overview of PM2.5 sources and control strategies. Fuel Process. Technol. 6566:379–392. doi:10.1016/S0378-3820(99)00105-8
  • Verma, V., Z. Ning, A.K. Cho, J.J. Schauer, M.M. Shafer, and C. Sioutas. 2009. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmos. Environ. 43(40): 6360–6368. doi:10.1016/j.atmosenv.2009.09.019
  • Wang, C.S. 2001. Electrostatic forces in fibrous filters—A review. Powder Technol. 118(1–2): 166–170. doi:10.1016/S0032-5910(01)00307-2
  • Wang, J., L. Feng, and G.E. Tverberg. 2013. An analysis of China’s coal supply and its impact on China’s future economic growth. Energy Policy 57: 542–551. doi:10.1016/j.enpol.2013.02.034
  • Watanabe, T., F. Tochikubo, Y. Koizumi, T. Tsuchida, J. Hautanen, and E.I. Kauppinen. 1995. Submicron particle agglomeration by an electrostatic agglomerator. J. Electrostat. 34(4): 367–383. doi:10.1016/0304-3886(95)93833-5
  • Wendt, J.O.L., and S.J. Lee. 2010. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications. Fuel 89(4): 895–903. doi:10.1016/j.fuel.2009.01.028
  • Xiang, X., B. Chen, and I. Colbeck. 2001. Bipolar charged aerosol agglomeration and collection by a two zone agglomerator. J. Environ. Sci. 13:276–279.
  • Yan, L., R.P. Gupta, and T.F. Wall. 2002. A mathematical model of ash formation during pulverized coal combustion. Fuel 81(3): 337–344. doi:10.1016/S0016-2361(01)00166-1
  • Yao, Q., S.Q. Li, H.W. Xu, J.K. Zhuo, and Q. Song. 2009. Studies on formation and control of combustion particulate matter in China: A review. Energy 34(9): 1296–1309. doi:10.1016/j.energy.2009.03.013
  • Zhang, L., and Y. Ninomiya. 2006. Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties. Fuel 85(2): 194–203. doi:10.1016/j.fuel.2005.03.034
  • Zhang, L., Y. Ninomiya, and T. Yamashita. 2006. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel 85(10–11): 1446–1457. doi:10.1016/j.fuel.2006.01.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.