1,098
Views
9
CrossRef citations to date
0
Altmetric
Technical Papers

Graphene-supported CoPc/TiO2 synthesized by sol-gel–hydrothermal method with enhanced photocatalytic activity for degradation of the typical gas of landfill exhaust

&
Pages 50-58 | Received 05 Mar 2014, Accepted 01 Sep 2014, Published online: 25 Sep 2014

References

  • Agrios, A.G., and P. Pichat. 2006. Recombination rate of photogenerated charges versus surface area: Opposing effects of TiO2 sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water. J. Photochem. Photobiol. A Chem. 180:130–135. doi:10.1016/j.jphotochem.2005.10.003
  • Ai, Z., L. Zhu, S. Lee, and L. Zhang. 2011. NO treated TiO2 as an efficient visible light photocatalyst for NO removal. J. Hazard. Mater. 192:361–367. doi:10.1016/j.jhazmat.2011.05.033
  • Akhavan, O., and E. Ghaderi. 2009. Photocatalytic reduction of graphene oxide nanosheetson TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 113:20214–20220. doi:10.1021/jp906325q
  • Bergersen, O., and K. Haarstad. 2008. Metal oxides remove hydrogen sulfide from landfill gas produced from waste mixed with plaster board under wet conditions. J. Air Waste Manage. Assoc. 58:1014–1021. doi:10.3155/1047-3289.58.8.1014
  • Bergersen, O., and K. Haarstad. 2014. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW). Waste Manage. 34:141–147. doi:10.1016/j.wasman.2013.09.012
  • Chen, X., and S.S. Mao. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107:2891–2959. doi:10.1021/cr0500535
  • Cote, L.J., F. Kim, and J.X. Huang. 2009. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131:1043–1049. doi:10.1021/ja806262m
  • Di, Y., J. Liu, J. Liu, S. Liu, and L. Yan. 2013. Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manage. Assoc. 63:1173–1181. doi:10.1080/10962247.2013.807318
  • Dincer, F., and A. Muezzinoglu. 2006. Chemical characterization of odors due to some industrial and urban facilities in Izmir, Turkey. Atmos. Environ. 40:4210–4219. doi:10.1016/j.atmosenv.2005.12.067
  • Ding, Y., C. Cai, B. Hu, Y. Xu, X. Zheng, Y. Chen, and W. Wu. 2012. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Manage. 32:317–326. doi:10.1016/j.wasman.2011.07.016
  • Enriquez, R., A.G. Agrios, and P. Pichat. 2007. Probing multiple effects of TiO2 sintering temperature on photocatalytic activity in water by use of a series of organic pollutant molecules. Catal. Today 120:196–202. doi:10.1016/j.cattod.2006.07.054
  • Enriquez, R., and P. Pichat. 2006. Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid and dichloroacetic acid in water. J. Environ. Sci. Health A 41:955–966. doi:10.1080/10934520600689233
  • Ghasemi, S., S.R. Setayesh, A. Habibi-Yangjeh, M.R. Hormozi-Nezhad, and M.R. Gholami. 2012. Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphenenanosheets for photocatalytic degradation of pollutants. J. Hazard. Mater. 199–200:170–178. doi:10.1016/j.jhazmat.2011.10.080
  • Gu, L., J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han. 2013. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 5:3085−3093. doi:10.1021/am303274t
  • Jiang, B., C. Tian, Q. Pan, J. Zheng, J.Q. Wang, W. Yan, and H. Fu. 2011. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {0 0 1} facets. J. Phys. Chem. C 115:23718–23725. doi:10.1021/jp207624x
  • Jing, L., X. Sun, B. Xin, B. Wang, W. Cai, and H. Fu. 2004. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 177:3375–3382. doi:10.1016/j.jssc.2004.05.064
  • Josset, S., N. Keller, M.C. Lett, M.J. Ledoux, and V. Keller. 2008. Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chem. Soc. Rev. 37:744–755. doi:10.1039/B711748P
  • Josset, S., J. Taranto, N. Keller, V. Keller, M.C. Let, M.J. Ledoux, V. Bonnet, and S. Rougeau. 2007. UV-A photocatalytic treatment of high flow rate air contaminated with Legionella pneumophila. Catal. Today 129:215–222. doi:10.1016/j.cattod.2007.08.010
  • Kim, H.I., G.H. Moon, D. Monllor-Satoca, Y. Park, and W. Choi. 2012. Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J. Phys. Chem. C 116:1535–1543. doi:10.1021/jp209035e
  • Kim, K.H., Y.J. Choi, E.C. Jeon, and Y. Sunwoo. 2005. Characterization of malodorous sulfur compounds in landfill gas. Atmos. Environ. 39: 1103–1112. doi:10.1016/j.atmosenv.2004.09.083
  • Landaud, S., S. Helinck, and P. Bonnarme. 2008. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl. Microbiol. Biotechnol. 77:1191–1205. doi:10.1007/s00253-007-1288-y
  • Lee, E., J.Y. Hong, H. Kang, and J. Jang. 2012. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater. 219–220:13–18. doi:10.1016/j.jhazmat.2011.12.033
  • Li, K., J. Xiong, T. Chen, L. Yan, Y. Dai, D. Song, Y. Lv, and Z. Zeng. 2013. Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation. J. Hazard. Mater. 250–251:19–28. doi:10.1016/j.jhazmat.2013.01.069
  • Li, X., G. Zhang, and H. Pan. 2012. Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode. J. Hazard. Mater. 199–200:255–261. doi:10.1016/j.jhazmat.2011.11.006
  • Liu, T.X., X.Z. Li, and F.B. Li. 2010. Development of a photocatalytic wet scrubbing process for gaseous odor treatment. Ind. Eng. Chem. Res. 49:3617–3622. doi:10.1021/ie1000295
  • Liu, W., Y. Wang, L. Gui, and Y. Tang. 1999. Preparation and characterization of novel nanoscopic titanium dioxide/phthalocyanine complex films. Langmuir 15:2130–2133. doi:10.1021/la981122w
  • Low, W., and V. Boonamnuayvitaya. 2013. Enhancing the photocatalytic activity of TiO2 co-doping of grapheme-Fe3+ ions for formaldehyde removal. J. Environ. Manage. 127:142–149. doi:10.1016/j.jenvman.2013.04.029
  • Mao, F., C. Tsai, and S. Shen. 2006. Critical components of odors in evaluating the performance of food waste composting plants. Sci. Total Environ. 370:323–329. doi:10.1016/j.scitotenv.2006.06.016
  • Pal, A., S.O. Pehkonen, L.E. Yu, and M.B. Ray. 2008. Photocatalytic inactivation of airborne bacteria in a continuous-flow reactor. Ind. Eng. Chem. Res. 47:7580–7585. doi:10.1021/ie701739g
  • Palmisano, G., M.C. Gutiérrez, M.L. Ferrer, M.D. Gil-Luna, V. Augugliaro, S. Yurdakal, and M. Pagliaro. 2008. TiO2/ORMOSIL thin films doped with phthalocyanine dyes: New photocatalytic devices activated by solar light. J. Phys. Chem. C 112:2667–2670. doi:10.1021/jp709853e
  • Paschoalino, M.P., and W.F. Jardim. 2008. Indoor air disinfection using a polyester supported TiO2 photo-reactor. Indoor Air 18:473–479. doi:10.1111/j.1600-0668.2008.00548.x
  • Perera, S.D., R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus. 2012. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2:949−956. doi:10.1021/cs200621c
  • Ranjit, K.T., and I. Willner. 1998. Iron(III) phthalocyanine-modified titanium dioxide: A novel photocatalyst for the enhanced photodegradation of organic pollutants. J. Phys. Chem. B 102:9397–9403. doi:10.1021/jp982694s
  • Rappert, S., and R. Müller. 2005. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manage. 25:887–907. doi:10.1016/j.wasman.2005.07.008
  • Schippera, E.T.W.M., J.P.A. Heutsa, P. Pieta, T.P.M. Beelenb, and A.L. German. 1994. Effects of complexation of oppositely charged water-soluble cobalt phthalocyanines on the catalytic mercaptoethanol autoxidation. J. Mol. Catal. 87:161–176. doi:10.1016/0304-5102(93)E0233-7
  • Schubert, U., A. Lorenz, N. Kundo, T. Stuchinskaya, L. Gogina, A. Salanov, V. Zaikovskii, V. Maizlish, and G.P. Shaposhnikov. 1997. Cobalt phthalocyanine derivatives supported on TiO2 by sol-gel processing. Part 1: Preparation and microstructure. Chem. Ber. 130:1585–1589. doi:10.1002/cber.19971301106
  • Sher Shah, M.S.A., A.R. Park, K. Zhang, J.H. Park, and P.J. Yoo. 2012. Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 4:3893–3901. doi:10.1021/am301287m
  • Stengl, V., D. Popelkova, and P. Vlacil. 2011. TiO2-graphene nanocomposite as high performance photocatalysts. J. Phys. Chem. C 115:25209–25218. doi:10.1021/jp207515z
  • Stuchinskaya, T., N. Kundo, L. Gogina, U. Schubert, A. Lorenz, and V. Maizlish. 1999. Cobaltphthalocyanine derivatives supported on TiO2 by sol–gel processing. Part 2. Activity in sulfide and ethanethiol oxidation. J. Mol. Catal. A Chem. 140:235–240. doi:10.1016/S1381-1169(98)00239-8
  • Tian, G., Y. Chen, K. Pan, D. Wang, W. Zhou, Z. Ren, and H. Fu. 2010. Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity. Appl. Surf. Sci. 256:3740–3745. doi:10.1016/j.apsusc.2010.01.016
  • Wang, H., T. Maiyalagan, and X. Wang. 2012. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2:781–794. doi:10.1021/cs200652y
  • Wei, X., Z. Yang, S.L. Tay, and W. Gao. 2014. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating. Appl. Surf. Sci. 290:274–279. doi:10.1016/j.apsusc.2013.11.067
  • Wu, T., X. Wang, and D. Li. 2010. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ. 44:5065–5071. doi:10.1016/j.atmosenv.2010.09.019
  • Yang, Z., J. Xu, C. Wu, H. Jing, P. Li, and H. Yin. 2014. New insight into photoelectric converting CO2 to CH3OH on the one-dimensional ribbon CoPc enhanced Fe2O3NTs. Appl. Catal. B Environ. 156–157:249–256. doi:10.1016/j.apcatb. 2014.03.012
  • Yu, J.C., J. Yu, W. Ho, Z. Jiang, and L. Zhang. 2002. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14:3808–3816. doi:10.1021/cm020027c
  • Yu, Y., T. Zhang, L. Zheng, and J. Yu. 2013. Photocatalytic degradation of hydrogen sulfide using TiO2 film under microwave electrodeless discharge lamp irradiation. Chem. Eng. J. 225:9–15. doi:10.1016/j.cej.2013.03.032
  • Zacarías, S.M., M.L. Satuf, M.C. Vaccari, and O.M. Alfano. 2012. Efficiency Evaluation of different TiO2 coatings on the photocatalytic inactivation of airborne bacterial spores. Ind. Eng. Chem. Res. 51:13599−13608. doi:10.1021/ie3009956
  • Zhang, H., X. Lv, Y. Li, Y. Wang, and J. Li. 2010. P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. doi:10.1021/nn901221k
  • Zhao, J., S. Pei, W. Ren, L. Gao, and H.M. Cheng. 2010. Efficient Preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4:5245–5252. doi:10.1021/nn1015506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.