1,126
Views
15
CrossRef citations to date
0
Altmetric
Technical Paper

Co-digestion of sewage sludge and dewatered residues from enzymatic hydrolysis of sugar beet pulp

&
Pages 1354-1364 | Received 23 Jun 2015, Accepted 03 Sep 2015, Published online: 20 Oct 2015

References

  • Alkaya, E., and G.N. Demirer. 2011. Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors. Renew. Energy 36:971–975. doi:10.1016/j.renene.2010.08.040
  • American Public Health Association. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington, DC: American Public Health Association.
  • Appels, L., J. Baeyens, J. Degreve, and R. Dewil. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34:755–781. doi:10.1016/j.pecs.2008.06.002
  • Arasimovich, V.V., and A.I. Ermakov. 1987. Measurement of polysaccharides and lignin. In Methods for Biochemical Studies of Plants, ed. A.I. Ermakov, 166–170. Leningrad: Agropromizdat.
  • Athanasoulia, E., P. Melidis, and A. Aivasidis. 2012. Optimization of biogas production from waste activated sludge through serial digestion. Renew. Energy 47:147–151. doi:10.1016/j.renene.2012.04.038
  • Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manage. 52:858–875. doi:10.1016/j.enconman.2010.08.013
  • Balat, M., H. Balat, and C. Oz. 2008. Progress in bioethanol processing. Prog. Energy Combust. Sci. 34:551–573. doi:10.1016/j.pecs.2007.11.001
  • Bolzonella, D., P. Pavan, P. Battistoni, and F. Cecchi. 2005. Mesophilic anaerobic digestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process Biochem. 40:1453–1460. doi:10.1016/j.procbio.2004.06.036
  • Borowski, S., and L. Weatherley. 2013. Co-digestion of solid poultry manure with municipal sewage sludge. Bioresour. Technol. 142:345–352. doi:10.1016/j.biortech.2013.05.047
  • Brooks, L., V. Parravicini, K. Svardal, H. Kroiss, and L. Prendl. 2008. Biogas from sugar beet press pulp as substitute for fossil fuel in sugar beet factories. Water Sci. Technol. 58:1497–1504. doi:10.2166/wst.2008.516
  • Cabbai, V., M. Ballico, E. Aneggi, and D. Goi. 2013. BMP test of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manage. 33:1626–1632. doi:10.1016/j.wasman.2013.03.020
  • Callaghan, F.J., D.A.J. Wase, K. Thayanithy, and C.F. Forster. 2002. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 27:71–77. doi:10.1016/S0961-9534(01)00057-5
  • Calli, B., B. Mertoglu, B. Inanc, and O. Yenigun. 2005. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 40:1285–1292. doi:10.1016/j.procbio.2004.05.008
  • Concha, J., C. Weinstein, and M.E. Zuniga. 2013. Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line. Front. Chem. Sci. Eng. 7:482–489. doi:10.1007/s11705-013-1342-5
  • Donkoh, E., J. Degenstein, and Y. Ji. 2012. Process integration and economics evaluation of sugar beet pulp conversion into ethanol. Int. J. Agric. Biol. Eng. 5:52–61 ( open access at http://www.ijabe.org). doi:10.3965/j.ijabe.20120502.007
  • Doran, J., and B. Foster. 2000. Ethanol production from sugar beet pulp using engineered bacteria. Int. Sugar J. 102:336–340. doi:0020-8841(200007)102:1219<336:EPFSBP>2.0.ZU;2-8.
  • Ehrman, T. 1996. Determination of Acid-Soluble Lignin in Biomass. Laboratory Analytical Procedure No. LAP-004. Golden, CO: National Renewable Energy Laboratory.
  • Esposito, G., L. Frunzo, A. Panico, and F. Pirozzi. 2012. Enhanced bio-methane production from codigestion of different organic wastes. Environ. Technol. 33:2733–2740. doi:10.1080/09593330.2012.676077
  • Fang, C., K. Boe, and I. Angelidaki. 2011. Anaerobic co-digestion of by-products from sugar production with cow manure. Water Res. 45:3473–3480. doi:10.1016/j.watres.2011.04.008
  • Hansen, K.H., I. Angelidaki, and B.K. Ahring. 1998. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 32:5–12. doi:10.1016/S0043-1354(97)00201-7
  • Hutnan, M., M. Drtil, and L. Mrafkova. 2000. Anaerobic biodegradation of sugar beet pulp. Biodegradation 11:203–211. doi:10.1023/A:1011139621329
  • Ivetic, D.Z., B.M. Sciban, and M.G. Antov. 2012. Enzymatic hydrolysis of pretreated sugar beet shreds: Statistical modeling of the experimental results. Biomass Bioenergy 47:387–394. doi:10.1016/j.biombioe.2012.09.020
  • Kafle, G.K., and S.H. Kim. 2013. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operations. Appl. Energy 103:61–72. doi:10.1016/j.apenergy.2012.10.018
  • Koppar., A., and P. Pullammanappallil. 2008. Single-stage, batch, leach-bed, thermophilic anaerobic digestion of spent sugar beet pulp. Bioresour. Technol. 99:2831–2839. doi:10.1016/j.biortech.2007.06.051
  • Kryvoruchko, V., A. Machmuller, V. Bodiroza, B. Amon, and T. Amon. 2009. Anaerobic digestion of by-products of sugar beet and starch potato processing. Biomass Bioenergy 33:620–627. doi:10.1016/j.biombioe.2008.10.003
  • Kürschner, K., and A. Hoffer. 1967. The isolation and determination of cellulose. In Methods of Wood Chemistry, Vol. 2, ed. B.L. Browning, 406–407. New York: John Wiley.
  • Leijdekkers, A.G.M., J.P.M. Bink, S. Geutjes, H.A. Schols, and H. Gruppen. 2013. Enzymatic saccharification of sugar beet pulp for the production of galacturonic acid and arabinose; a study on the impact of the formation of recalcitrant oligosaccharides. Bioresour. Technol. 128:518–525. doi:10.1016/j.biortech.2012.10.126
  • Limayem, A., and S.C. Ricke. 2012, Lignocellulosic biomass for bioethanol production. Current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38:449–467. doi:10.1016/j.pecs.2012.03.002
  • Ma, J., M. Carballa, P. Van De Caveye, and W. Verstraete. 2009. Enhanced propionic acid degradation (EPAD) system: Proof of principle and feasibility. Water Res. 43:3239–3248. doi:10.1016/j.watres.2009.04.046
  • Montanes, R., M. Perez, and R. Solera. 2013. Mesophilic anaerobic co-digestion of sewage sludge and a lixiviation of sugar beet pulp: Optimisation of the semi-continuous process. Bioresour. Technol. 142:655–662. doi:10.1016/j.biortech.2013.05.017
  • Panagiotopoulos, J.A., R.R. Bakker, T. de Vrije, K. Urbaniec, E.G. Koukios, and P.A.M. Claassen. 2010. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU. J. Clean. Prod. 18:S9–S14. doi:10.1016/j.jclepro.2010.02.025
  • Spagnuolo, M., C. Crecchio, M.D.R. Pizzigallo, and P. Ruggiero. 1997. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresour. Technol. 60:215–222. doi:10.1016/S0960-8524(97)00013-8
  • Stoyanova, E., B. Forsthuber, S. Pohn, C. Schwarz, W. Fuchs, and G. Bochmann. 2014. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. Biodegradation 25:277–289. doi:10.1007/s10532-013-9659-9
  • Suhartini, S., S. Heaven, and C.J. Banks. 2014. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: Performance, dewaterability and foam control. Bioresour. Technol. 152:202–211. doi:10.1016/j.biortech.2013.11.010
  • Templeton, D., and T. Ehrman. 1995. Determination of Acid-Insoluble Lignin in Biomass. Laboratory Analytical Procedure No. LAP-003. Golden, CO: National Renewable Energy Laboratory.
  • Wang, Y., Y. Zhang, J. Wang, and L. Meng. 2009. Effect of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33:848–853. doi:10.1016/j.biombioe.2009.01.007
  • Weiland, P. 2010. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85:849–860. doi:10.1007/s00253-009-2246-7
  • Zheng, Y., C. Yu, Y. Cheng, C. Lee, C.W. Simmons, T.M. Dooley, R. Zhang, B.M. Jenkins, and J.S. VanderGheynst. 2012. Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production. Appl. Energy 93:168–175. doi:10.1016/j.apenergy.2011.12.084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.