1,390
Views
14
CrossRef citations to date
0
Altmetric
Technical Papers

Source apportionment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Palm Beach County, Florida

, , &
Pages 377-386 | Received 07 Oct 2015, Accepted 04 Jan 2016, Published online: 21 Mar 2016

References

  • Aydin, Y.M., M. Kara, Y. Dumanoglu, M. Odabasi, and T. Elbir. 2014. Source apportionment of polycyclic armoatic hydrocarbons (PAHs) and polychlorinated (PCBs) in ambient air of an industrial region in Turkey. Atmos. Environ. 97:271–85. doi:10.1016/j.atmosenv.2014.08.032
  • Baek, S.O., R.A. Field, M.E. Goldstone, P.W. Kirk, J.N. Lester, and R. Pery. 1991. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut. 60:279–300. doi:10.1007/BF00282628
  • Chow, J.C., J.G. Watson, and D.H. Lowenthal. 1996. Sources and chemistry of PM10 aerosol in Santa Barbara County, CA. Atmos. Environ. 30:1489–99. doi:10.1016/1352-2310(95)00363-0
  • Christensen, W.F., and R.F. Gunst. 2004. Measurement error models in chemical mass balance analysis of air quality data. Atmos. Environ. 38:733–44. doi:10.1016/j.atmosenv.2003.10.018
  • de Andrade, S.J., J. Cristale, F.S. Silva, G.J. Zocolo, and M.R. Marchi. 2010. Contribution of sugarcane harvesting season to atmospheric contamination by polycyclic aromatic hydrocarbons (PAHs) in Araraquara city, Southeast Brazil. Atmos. Environ. 44:2913–19. doi:10.1016/j.atmosenv.2010.04.026
  • de Assuncao, J.V., C.R. Pesquero, A.C. Nardocci, A.P. Francisco, N.S. Soares, and H. Ribeiro. 2014. Airborne polycyclic aromatic hyrocarbons in a medium-sized city affected by preharvest sugarcane burning and inhalation risk for human health. J. Air Waste Manage. 64:1130–39. doi:10.1080/10962247.2014.928242
  • Engling, G., J. He, R. Betha, and R. Balasubramanian. 2014. Assessing the regional impact of indonesian biomass burning emisions based on organic molecualr tracers and chemical mass balance modeling. Atmos. Chem. Phys. 14:8043–54. doi:10.5194/acp-14-8043-2014
  • Gullette, B. K., A. Touati, J. Huwe, and H. Hakk. 2006. PCDD and PCDF emissions from simulated sugarcane field burning. Environ. Sci. Technol. 40:6228–34. doi:10.1021/es060806k
  • Hall, D., C.-Y. Wu, Y.M. Hsu, J. Stormer, G. Engling, K. Capeto, J. Wang, S. Brown, H.-W. Li, and K.-M. Yu. 2012. PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmos. Environ. 55:164–72. doi:10.1016/j.atmosenv.2012.03.034
  • Harrison, R.M., D.J.T. Smith, and L. Luhana. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30:825–32. doi:10.1021/es950252d
  • Henry, R.C. 1992. Dealing with near collinearity in chemical mass balance receptor models. Atmos. Environ. 26A:933-938. doi:10.1016/0960-1686(92)90251-F
  • Javitz, H.S., J.G. Watson, and N. Robinson. 1988. Performance of chemical mass balance model with simulated local-scale aerosols. Atmos. Environ. 22:2309–22. doi:10.1016/0004-6981(88)90142-4
  • Jenkins, B.M., A.D. Jones, S.Q. Turn, and R.B. Williams. 1996. Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ. Sci. Technol. 30:2462–69. doi:10.1021/es950699m
  • Kavouras, I.G., P. Koutrakis, M. Tsapakis, et al. 1999. Source apportionment of urban particulate aliphatic and polynuclear aromatic hyrocarbons (PAHs) using multivariate methods. Environ. Sci. Technol. 35:2288–94. doi:10.1021/es001540z
  • Kim, I.S., J.Y. Lee, and Y.P. Kim. 2013. Impact of polycyclic aromatic hydrocarbon (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea. Atmos. Environ. 70:159–65. doi:10.1016/j.atmosenv.2012.12.040
  • Kim, K.-H., S.A. Jahan, E. Kabir, and R.J.-C. Brown. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60:71–80. doi:10.1016/j.envint.2013.07.019
  • Larsen, R.K., and J.E. Baker. 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ. Sci. Technol. 37:1873–81. doi:10.1021/es0206184
  • Lee, S., and A.G. Russell. 2007. Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmos. Environ. 41:9616–24. doi:10.1016/j.atmosenv.2007.08.022
  • Li, A., J.-K. Jang, and P.A. Scheff. 2003. Application of EPA CMB8.2 Model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environ. Sci. Technol. 37:2958–65. doi:10.1021/es026309v
  • Li, C.K., and R.M. Kamens. 1993. The use of polycyclic aromatic hydrocarbons as source signature in receptor modeling. Atmos. Environ. 27A:523–32. doi:10.1016/0960-1686(93)90209-H
  • Li, H.-W., N. Afshar-Mohajer, C.-Y. Wu, J.-C.J. Bonzongo, V.A. Ilacqua, Y. Choi, and B. Birky. 2014. Impacts of hazardous air pollutants emitted from phosphate fertilizer production plants on their ambient concentration levels in the Tampa Bay area. Air Qual. Atmos. Health 8:453–67. doi:10.1007/s11869-014-0294-3
  • Mackay, D., and B. Hickie. 2000. Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec. Chemosphere 41:681–92. doi:10.1016/S0045-6535(99)00486-5
  • Manoli, E., A. Kouras, O. Karagkiozidou, G. Argyropoulos, D. Vousta, and C. Samara. 2015. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environ. Sci. Pollut. Res. doi:10.1007/s11356-015-5573-5
  • Miller, M.S., S.K. Friedlander, and G.M. Hidy. 1972. A chemical element balance for the Pasadena aerosol. J. Colloid Interface Sci. 39:65–176. doi:10.1016/0021-9797(72)90152-X
  • Mishra, N., G.A. Ayoko, and L. Morawska. 2015. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: occurrence, toxicity and source apportionment. Environ. Pollut. 208:110–17. doi:10.1016/j.envpol.2015.08.015
  • Pace, T.G., and J.G. Watson. 1987. Protocol for applying and validating the CMB model. EPA 450/4-87-010. Research Triangle Park, NC: U.S. Environmental Protection Agency.
  • Pitts, J.N., H.-R. Paur, B. Zielinska, J. Arey, A.M. Winer, T. Ramdahl, and V. Meijia. 1986. Factors influencing the reactivity of polycyclic armoatic hydrocarbons adsorbed on filters and ambient POM with ozone. Chemosphere 15:675–85. doi:10.1016/0045-6535(86)90033-0
  • Pope, A.A. 1998. Locating and estimating air emissions from sources of polycyclic organic matter. Research Triangle, NC: Office of Air Quality and Planning and Standards, EPA.
  • Rajput, P., M.M. Sarin, R. Rengarajan, and D. Singh. 2011. Atmospheric polycyclic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic plain: Isomer ratios and temporal trends. Atmos. Environ. 45:6732–40. doi:10.1016/j.atmosenv.2011.08.018
  • Ravindra, K., R. Sokhi, and R. Van Grienken. 2008. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42:2895–921. doi:10.1016/j.atmosenv.2007.12.010
  • Roussel, R., M. Allaire, and R.S. Friar. 1992. Atmospheric polycyclic aromatic hydrocarbons at a point source of emissions. Part A: Identification and determination of polycyclic aromatic compounds in airborne particulate matter near a horizontal stud Soderberg plant. J. Air Waste Manage. Assoc. 42:1609–13. doi:10.1080/10473289.1992.10467105
  • Simcik, M.F., S.J. Eisenreich, and P.J. Lioy. 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 33:5071–79. doi:10.1016/S1352-2310(99)00233-2
  • Singh, D.P., R. Gadi, T.K. Mandal, T. Saud, M. Saxena, and S.K. Sharma. 2013. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic plains of India. Atmos. Environ. 68:120–26. doi:10.1016/j.atmosenv.2012.11.042
  • Tsapakis, M., and E.G. Stephanou. 2003. Collection of gas and particle semi-volatile oraganic compounds: Use of an oxidant denuder to minimize polycyclic armoatic hydrocarbons degradation during high-volume air sampling. Atmos. Environ. 37:4935–44. doi:10.1016/j.atmosenv.2003.08.026
  • U.S. Environmental Protection Agency). 1999. Compendium method TO-13A-determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography. Cincinnati, OH: U.S. Environmental Protection Agency.
  • Watson, J.G., N.F. Robinson, J.C. Chow, R.C. Henry, et al. 1990. The EPA/DRI chemical mass balance receptor model, CMB 7.0. Environ. Software 5:38–49. doi:10.1016/0266-9838(90)90015-X
  • Winchester, J.W., and G.D. Nifong. 1971. Water pollution in Lake Michigan by trace elements from pollution aerosol fallout. Water Air Soil Pollut. 1:50–64. doi:10.1007/BF00280779
  • Wu, C.-F., S.-Y. Wu, Y.-H. Wu, A.C. Cullen, T.V. Larson, J. Williamson, and L.-J.S. Liu. 2009. Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ. Int. 35:516–22. doi:10.1016/j.envint.2008.09.009
  • Yang, H.-H., W.-J. Lee, S.J. Chen, and S.-O. Lai. 1998. PAH emission from various industrial stacks. J. Hazard. Mater. 60:159–74. doi:10.1016/S0304-3894(98)00089-2
  • Yang, H.-H., and C.-M. Chen. 2004. Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan. Chemosphere 56:879–87. doi:10.1016/j.chemosphere.2004.05.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.