3,460
Views
25
CrossRef citations to date
0
Altmetric
Technical Papers

Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles

, , , , , & show all
Pages 1045-1060 | Received 17 Sep 2015, Accepted 19 Feb 2016, Published online: 07 Mar 2016

References

  • Andrew, K., D. Littlejohn, et al. 2008. Trends in on-road vehicle emissions of ammonia. Atmos. Environ. 43(8): 1565–70.
  • Ball, D., D. Moser, et al. 2013. N2O emissions of low emissions vehicle. SAE Int. J. Fuels Lubricants 6(2): 450–56. doi:10.4271/2013-01-1300
  • Besch, C.M., J. Israel, et al. 2015. Emissions characterization from different technology heavy-duty engines retrofitted for CNG/diesel dual-fuel operation. SAE Int. J. Engines 8(3). 1342–1358. doi:10.4271/2015-01-1085
  • Bielaczyc, P., A. Szczotka, et al. 2012. Comparison of ammonia emission factors from light-duty vehicles operating on gasoline, liquefied petroleum gas (LPG) and compressed natural gas (CNG). SAE 2012-01-1095.
  • Buchholz, B., R. Dibble, et al. 2003. Quanitfying the contribution of lubrication oil carbon to particulate emissions from a diesel engine. SAE 2003-01-1987.
  • Chow, C. J., G J. Watson, et al. 2007. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc. 57:1014–23. doi:10.3155/1047-3289.57.9.1014
  • Couch, P. 2011. Development of a drayage truck chassis dynamometer test cycle. Irvine, CA: TIAX LLC.
  • Defoort, M., D. Olsen, et al. 2003. The effect of air–fuel ratio control strategies on nitrogen compound formation in three-way catalysts. Int. J. Engine Res. 5(1): 115–22. doi:10.1243/146808704772914291
  • Hajbabaei, M., G. Karavalakis, et al. 2013. Impact of natural gas fuel composition on criteria, toxic and particle emissions from transit buses equipped with lean-burn and stoichiometric engines. Energy 62: 425–34. doi:10.1016/j.energy.2013.09.040
  • Hallstrom, K., K. Voss, et al. 2013. The formation of N2O on the SCR catalyst in a heavy-duty US 2010 emission control system. SAE 2013-01-2463.
  • Health Effects Institute. 2008. Mobile-source air toxics: A critical review of the literature on exposure and health effects. A. T. R. Panel. Special Report 16. Boston, MA: Health Effects Institute.
  • Herner, D.J., S. Hu, et al. 2011. Effect of advanced aftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions. Environ. Sci. Technol. 45(6): 2413–19. doi:10.1021/es102792y
  • Holmen, B.A., and A. Ayala. 2002. Ultrafine PM emissions from natural gas, oxidation catalyst diesel and particulate-trap diesel heavy-duty transit buses. Environ. Sci. Technol. 36(23): 5041–5050. doi:10.1021/es015884g
  • Huai, T., T. Durbin, et al. 2003. Investigation of NH3 Emissions from New Technology Vehicles as a Function of Vehicle Opearting Conditions. Environmental Science and technology 37(21): 4841–4847. doi:10.1021/es030403+
  • Intergovernmental Panel on Climate Change. 2007. IPCC fourth assessment report: Climate change 2007. https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm. Retrieved March 21, 2014.
  • Kado, N., R. Okamato, et al. 2005. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles. Environ. Sci. Technol. 39: 7638–49. doi:10.1021/es0491127
  • Kamasamudram, K., C. Henry, et al. 2012. N2O formation and mitigation in diesel aftertreatment systems. SAE Int. J. Engines 5(2): 688–98. doi:10.4271/2012-01-1085
  • Khalek, A.I. 2007. 2007 Diesel particulate measurement research—Final report, Project E-66 Phase 3. Alpharetta, GA: Coordinating Research Council.
  • Khalek, A.I., M. Blanks, et al. 2013. Phase 2 of the Advanced Collaborative Emissions Study. Southwest Research Institute. http://www.crcao.org/reports/recentstudies2013/ACES%20Ph2/03-17124_CRC%20ACES%20Phase2-%20FINAL%20Report_Khalek-R6-SwRI.pdf
  • Khalek, A.I., T. Bougher, et al. 2011. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S Environmental Protection Agency 2007 emissions standards. J. Air Waste Manage. Assoc. 61(4): 427–42. doi:10.3155/1047-3289.61.4.427
  • Koebel, M., M. Elsener, et al. 2001. Recent advances in the development of urea-SCR for automotive applications. SAE Technical Paper 2001-01-3625.
  • Laughlin, M. and A. Burnham. 2014. Case study—Compressed natural gas refuse fleets. U.S. Department of Energy. http://www.afdc.energy.gov/uploads/publication/casestudy_cng_refuse_feb2014.pdf
  • Liu, G. Z., E. M. Thurow, et al. 2005. Transient performance of diesel particulate filters as measured by an engine exhuast particle size spectrometer. SAE 2005-01-0185.
  • Liu, G. Z., V. N. Vasys, et al. 2012. Comparison of strategies for the measurement of mass emissions from diesel engines emitting ultra-low levels of particulate matter. Aerosol Sci. Technol. 43(11): 1142–52. doi:10.1080/02786820903219035
  • Lloyd, C.A., and T. Cackette. 2011. Diesel engines: Environmental impact and control. J. Air Waste Manage. Assoc. 51(6): 809–47. doi:10.1080/10473289.2001.10464315
  • Luo, J.-Y., A. Yezerets, et al. 2012. Hydrocarbon poisoning of Cu–zeolite SCR catalysts. SAE SAE-2012-01-1096.
  • Massimo, C., M. Mauro, et al. 1998. Poisoning of lambda sensor: An experimntal method to measure lambda sensor switch velocity and its effect on air–fuel ratio excursion. SAE 982647.
  • Mizutani, A., T. Okawa, et al. 1998. Oxygen sensor applications as ULEV or tighter emission vehicle. SAE 980264.
  • Renner, E., and R. Wolke. 2008. Formation of secondary inorganic aerosols by high ammonia emissions simulated by LM/MUSCAT. In Air Pollution Modeling and Its Application XIX, ed. C. Borrego and A. Miranda, 522–29. Dordrecht, The Netherlands: Springer.
  • Suarez-Bertoa, R., A.A. Zardini, et al. 2014. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ. 97 (November):43–53. doi:10.1016/j.atmosenv.2014.07.050
  • Thiruvengadam, A., M. Besch, et al. 2011. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine. Environ. Sci. Technol. 46(3): 1907–13. doi:10.1021/es203079n
  • Thiruvengadam, A., M. Besch, et al. 2015. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles. Environ. Sci. Technol. 49(1): 5236–44. doi:10.1021/acs.est.5b00943
  • Thiruvengadam, A., M. Besch, et al. 2014. Characterization of particulate matter emissions from a current technology natural gas engine. Environ. Sci. Technol. 48(1): 8235–42. doi:10.1021/es5005973
  • Thiruvengadam, A., D.K. Carder, et al. 2011. Effect of an economical oxidation catalyst formulation on regulated and unregulated pollutants from natural gas fueled heavy duty transit buses. Transport. Res. D Transport Environ. 16(6): 469–73. doi:10.1016/j.trd.2011.04.003
  • Thomas, J.A., R.E. Soltis, et al. 1999. Laboratory and engine studies of the effect of NOx on the response of heated exhaust gas oxygen sensors. SAE 1999-01-1079.
  • USEPA. 1999. Compendium method TO-15—Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Cincinnati, OH: USEPA.
  • USEPA. 2011. Final Rulemaking to establish greenhouse gas emissions standards and fuel efficiency standards for medium- and heavy-duty engines and vehicles. USEPA. Office of Transportation and Air Quality. EPA-420-R-11-901. https://www3.epa.gov/otaq/climate/documents/420r11901.pdf
  • Verma, V., M. M. Shafer, et al. 2010. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles. Atmos. Environ. 44: 5165–73. doi:10.1016/j.atmosenv.2010.08.052
  • Winebrake, J., M. Wang, et al. 2001. Toxic emissions from mobile sources: A total fuel-cycle analysis for conventional and alternative fuel vehicles. J. Air Waste Manage. Assoc. 51: 1073–86. doi:10.1080/10473289.2001.10464325
  • Yoon, S., J. Collins, et al. 2013. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies. J. Air Waste Manage. Assoc. 63(8): 926–33. doi:10.1080/10962247.2013.800170
  • Yoon, S., S. Hu, et al. 2014. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalyst compared to lean-burn engines and oxidation catalyst technologies. Atmos. Environ. 83(1): 220–28. doi:10.1016/j.atmosenv.2013.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.