1,154
Views
11
CrossRef citations to date
0
Altmetric
Technical Paper

Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon

, , , &
Pages 698-706 | Received 12 Oct 2015, Accepted 19 Mar 2016, Published online: 04 Apr 2016

References

  • Almquist, C., and N. Quin. 2013. Pyrolysis of deinked paper sludge to synthesize adsorbents for elemental Hg vapors. Environ. Prog. Sustain. Energy 32:524–34. doi:10.1002/ep.11652
  • Bustard, J., M. Durham, T. Starns, C. Lindsey, C. Martin, R. Schlager, and K. Baldrey. 2004. Full-scale evaluation of sorbent injection for mercury control on coal-fired power plants. Fuel Process. Technol. 85:549–62. doi:10.1016/j.fuproc.2003.11.021
  • Chang John, C.S., and B.S. Ghorishi. 2003. Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber. Environ. Sci. Technol. 37(24): 5763–66. doi:10.1021/es034352s
  • Eswaran, S., and H.G. Stenger. 2005. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energy Fuels 19:2328–34. doi:10.1021/ef050087f
  • European Commission. 2006. Commission Regulation No 1881/2016 19 December 2006. Setting maximum levels for certain contaminants in foodstuffs.
  • Granite, E.J., H.W. Pennline, and R.A. Hargis. 2000. Novel sorbents for mercury removal from flue gas. Ind. Eng. Chem. Res. 39:1020–29. doi:10.1021/ie990758v
  • Heidel, B., M. Hilber, and G. Scheffknecht. 2014. Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization. Appl. Energy 114:485–91. doi:10.1016/j.apenergy.2013.09.059
  • Hu, C., J. Zhou, S. He, Z. Luo, and K. Cen. 2009. Effect of chemical activation of an activated carbon using zinc chloride on elemental mercury adsorption. Fuel Process. Technol. 90:812–17. doi:10.1016/j.fuproc.2009.03.020
  • Ie, I.R., W.C. Chen, C.S. Yuan, C.H. Hung, C.Y. Lin, H.H. Tsai, and Y.S. Jen. 2012. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon. J. Hazard. Mater. 217–18:43–50. doi:10.1016/j.jhazmat.2012.02.035
  • Jiang, G.B., J.B. Shi, and X.B. Feng. 2006. Mercury pollution in China. Environ. Sci. Technol. 40:3673–3678. doi:10.1021/es062707c
  • Jurng, J., T.G. Lee, and G.W. Lee. 2002. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere 47:907–913. doi:10.1016/S0045-6535(01)00329-0
  • Karatza, D., A. Lancia, and D. Musmarra. 1998. Fly ash capture of mercuric chloride vapors from exhaust combustion gas. Environ. Sci. Technol. 32:3999–4004. doi:10.1021/es971074m
  • Karatza, D., A. Lancia, D. Musmarra, and F. Pepe. 1996a. Adsorption of metallic mercury on activated carbon. Twenty-Sixth Symposium International on Combustion, The Combustion Institute, 2439–45.
  • Karatza, D., A. Lancia, D. Musmarra, and C. Zucchini. 2000. Study of mercury absorption and desorption on sulfur impregnated carbon. Exp. Thermal Fluid Sci. 21:150–55. doi:10.1016/S0894-1777(99)00065-5
  • Karatza, D., A. Lancia, D. Musmarra, F. Pepe, and G. Volpicelli. 1996b. Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon. Combust. Sci. Technol. 112:163–74. doi:10.1080/00102209608951954
  • Karatza, D., A. Lancia, D. Musmarra, F. Pepe, and G. Volpicelli. 1996c. Removal of mercuric chloride from flue gas by sulfur impregnated activated carbon. Hazard. Waste Hazard. Mater. 13:95–105. doi:10.1089/hwm.1996.13.95
  • Karatza, D., A. Lancia, M. Prisciandaro, D. Musmarra, and G. Mazziotti di Celso. 2013. Influence of oxygen on adsorption of elemental mercury vapors onto activated carbon. Fuel 111: 485–91. doi:10.1016/j.fuel.2013.03.068
  • Karatza, D., M. Prisciandaro, A. Lancia, and D. Musmarra. 2011. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors. J. Environ Sci. 23:1578–84. doi:10.1016/S1001-0742(10)60528-1
  • Lancia, A., D. Karatza, D. Musmarra, and F. Pepe. 1996. Adsorption of mercuric chloride from simulated incinerator exhaust gas by means of SorbalitTM particles. J. Chem. Eng. Jpn. 29:939–46. doi:10.1252/jcej.29.939
  • Lee, S.S., J.Y. Lee, and C.T. Keener. 2009. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Process. Technol. 90:1314–18. doi:10.1016/j.fuproc.2009.06.020
  • Lee, W.C., D.S. Serre, Y. Zhao, J.S. Lee, and W.T. Hastings. 2008. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions. J. Air Waste Manage. Assoc. 58:484–93. doi:10.3155/1047-3289.58.4.484
  • Li, Y., M. Daukoru, A. Suriyawong, and P. Biswas. 2009. Mercury emissions control in coal combustion systems using potassium iodide: Bench-scale and pilot-scale studies. Energy Fuels 23:236–43. doi:10.1021/ef800656v
  • Li, Y.H, C.W. Lee, and B.K. Gullett. 2002. The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon 40:65–72. doi:10.1016/S0008-6223(01)00085-9
  • Li, Y.H, C.W. Lee, and B.K. Gullett. 2003. Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption. Fuel 82:451–57. doi:10.1016/S0016-2361(02)00307-1
  • Niksa, S., and N. Fujiwara. 2005. Predicting extents of mercury oxidation in coal-derived flue gases. J. Air Waste Manage Assoc. 55:930–39. doi:10.1080/10473289.2005.10464688
  • Nordberg, G.F., Fowler B.A., Nordberg M., and L. Friberg. 2007. Handbook on Toxicology of Metals. San Diego, CA: Academic Press.
  • Pacyna, E.G., J.M. Pacyna, F. Steenhuisen, and S. Wilson. 2006. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40:4048–63. doi:10.1016/j.atmosenv.2006.03.041
  • Pacyna, E.G., J.M. Pacyna, K. Sundseth, J. Munthe, K. Kindbom, and S. Wilson. 2010. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44(20): 2487–89. doi:10.1016/j.atmosenv.2009.06.009
  • Pavlish, J.H. 2009. Preface to the AQVI special issue of Fuel Processing Technologies entitled: Air quality VI: Mercury, trace elements, SO3, particulate matter, and greenhouse gases. Fuel Process. Technol. 90:1327–32. doi:10.1016/j.fuproc.2009.09.006
  • Pavlish, J.H., E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, and D.L. Laudal. 2003. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82(2–3):89–165. doi:10.1016/S0378-3820(03)00059-6
  • Prisciandaro, M., G. Mazziotti di Celso, and F. Vegliò. 2003. Effect of burning supplementary waste fuels on the pollutant emissions by cement plants: A statistical analysis of process data. Resources Conserv. Recycling 39: 161–84. doi:10.1016/S0921-3449(02)00170-2
  • Rhee, H.-K., R. Aris, and N.R. Amundson. 1986. First Order Partial Differential Equations, Vol. 1. Englewood Cliffs, NJ: Prentice Hall.
  • Scala F., R. Chirone, and A. Lancia. 2011. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor. Fuel 90:2077–2082. doi:10.1016/j.fuel.2011.02.042
  • Scala, F., and H.L. Clack. 2008. Mercury emissions from coal combustion: Modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator. J. Hazard. Mater. 152:616–23. doi:10.1016/j.jhazmat.2007.07.024
  • Serre, S.D., and G.D. Silcox. 2000. Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind. Eng. Chem. Res. 39:1723–30. doi:10.1021/ie990680i
  • Shigeo, I., Y. Takahisa, and A. Kazuo. 2006. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Sci. Total Environ. 368(1): 397–402.
  • Skodras, G., I. Diamantopoulou, A. Zabaniotou, G. Stavropoulos, and G.P. Sakellaropoulos. 2007. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process. Technol. 88:749–758. doi:10.1016/j.fuproc.2007.03.008
  • Takaoka, M., N. Takeda, T. Fujiwara, M. Kurata, and T. Kimura. 2011. Control of mercury emission from municipal solid waste incinerator in Japan. J. Air Waste Manage. Assoc. 52:931–940. doi:10.1080/10473289.2002.10470831
  • Uddin, M.A., T. Yamada, and R. Ochiai. 2008. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon. Energy Fuels 22:2284–89. doi:10.1021/ef800134t
  • Wang, S., L. Zhang, L. Wang, Q. Wu, F. Wang, and J. Hao. 2014. A review of atmospheric mercury emissions, pollution and control in China. Front. Environ. Sci. Eng. 8:631–49. doi:10.1007/s11783-014-0673-x
  • Wu, Y., S.X. Wang, D.G. Streets, J.M. Hao, M. Chao, and J.K. Jiang. 2006. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ. Sci. Technol. 40:5312–5318. doi:10.1021/es060406x
  • Yang, H., Z. Xu, M. Fan, A.E. Bland, and R.R. Judkins. 2007. Adsorbents for capturing mercury in coal-fired boiler flue gas. J. Hazard Mater. 146(1–2):1–11. doi:10.1016/j.jhazmat.2007.04.113
  • Zheng, Y., A.D. Jensen, C. Windelin, and F. Jensen. 2012a. Review of technologies for mercury removal from flue gas from cement production processes. Prog. Energy Combust. Sci. 38:599–629. doi:10.1016/j.pecs.2012.05.001
  • Zheng, Y., A.D. Jensen, C. Windelin, and F. Jensen. 2012b. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas. Fuel 93:649–57. doi:10.1016/j.fuel.2011.09.053
  • Zhong, L., Y. Zhang, Z. Liu, Z. Sui, Y. Cao, and W.P. Pan. 2014. Study of mercury adsorption by selected Chinese coal fly ashes. J. Thermal Anal. Calorim. 116:1197–203. doi:10.1007/s10973-014-3657-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.