1,865
Views
14
CrossRef citations to date
0
Altmetric
Technical Papers

Adsorption properties of regenerative materials for removal of low concentration of toluene

, , , &
Pages 1224-1236 | Received 29 Feb 2016, Accepted 11 Jun 2016, Published online: 31 Aug 2016

References

  • Alcañiz-Monge, J., M. Pérez-Cadenas, and J. Marco-Lozar. 2012. Removal of harmful volatile organic compounds on activated carbon fibres prepared by steam or carbon dioxide activation. Adsorpt. Sci. Technol. 30:473–482. doi: 10.1260/0263-6174.30.6.473
  • Ania, C., J. Parra, J. Menendez, and J. Pis. 2005. Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous Mesoporous Mater. 85:7–15. doi:10.1016/j.micromeso.2005.06.013
  • Baek, S.-W., J.-R. Kim, and S.-K. Ihm. 2004. Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites. Catal. Today 93– 95: 575–581. doi:10.1016/j.cattod.2004.06.107
  • Baur, G.B., O. Beswick, J. Spring, I. Yuranov, and L. Kiwi-Minsker. 2015a. Activated carbon fibers for efficient VOC removal from diluted streams: The role of surface functionalities. Adsorption 21:255–264. doi: 10.1007/s10450-015-9667-7
  • Baur, G.B., I. Yuranov, and L. Kiwi-Minsker. 2015b. Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde. Catal. Today 249:252–258. doi:10.1016/j.cattod.2014.11.021
  • Bedia, J., J.M. Rosas, J. Rodríguez-Mirasol, and T. Cordero. 2010. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl. Catal. B 94:8–18. doi:10.1016/j.apcatb.2009.10.015
  • Brasquet, C., and P. Le Cloirec. 1997. Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 35:1307–1313. doi:10.1016/S0008-6223(97)00079-1
  • Chen, W., J.S. Zhang, and Z. Zhang. 2005. Performance of air cleaners for removing multiple volatile organic compounds in indoor air. ASHRAE Trans. 111:1101–1114.
  • Chiang, Y.-C., P.-C. Chiang, and C.-P. Huang. 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39:523–534. doi:10.1016/S0008-6223(00)00161-5
  • Chintawar, P.S., and H.L. Greene. 1997. Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites. Appl. Catal. B 14:37–47. doi:10.1016/S0926-3373(97)00010-6
  • Das, D., V. Gaur, and N. Verma. 2004. Removal of volatile organic compound by activated carbon fiber. Carbon 42:2949–2962. doi:10.1016/j.carbon.2004.07.008
  • Do, P.T.M., A.J. Foster, J. Chen, and R.F. Lobo. 2012. ‘Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chem. 14:1388–1397. doi:10.1039/c2gc16544a
  • Economy, J., M. Daley, and C. Mangun. 1996. Activated carbon fibers-past, present, and future. Urbana 51:61801.
  • Feng, W., S. Kwon, E. Borguet, and R. Vidic. 2005. Adsorption of hydrogen sulfide onto activated carbon fibers: Effect of pore structure and surface chemistry. Environ. Sci. Technol. 39:9744–9749. doi:10.1021/es0507158
  • Fournel, L., P. Mocho, R. Brown, and P. Le Cloirec. 2010. Modeling breakthrough curves of volatile organic compounds on activated carbon fibers. Adsorption 16:147–153. doi:10.1007/s10450-010-9207-4
  • Gaur, V., A. Sharma, and N. Verma. 2005. Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon 43:3041–3053. doi:10.1016/j.carbon.2005.06.039
  • Guieysse, B., C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah. 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnol. Adv. 26:398–410. doi:10.1016/j.biotechadv.2008.03.005
  • Guillemot, M., J. Mijoin, S. Mignard, and P. Magnoux. 2007. Adsorption of tetrachloroethylene on cationic X and Y zeolites: Influence of cation nature and of water vapor. Ind. Eng. Chem. Res. 46:4614–4620. doi:10.1021/ie0616390
  • Gupta, K.N., N.J. Rao, and G.K. Agarwal. 2015. Gaseous phase adsorption of volatile organic compounds on granular activated carbon. Chem. Eng. Commun. 202:384–401. doi:10.1080/00986445.2013.840827
  • Hu, X., S. Qiao, X.S. Zhao, and G.Q. Lu. 2001. Adsorption study of benzene in ink-bottle-like MCM-41. Ind. Eng. Chem. Res. 40:862–867. doi:10.1021/ie000496t
  • Huang, Z.-H., F. Kang, and J. Hao. 2004. Effect of temperature on the adsorption of organic vapours on activated carbon fibres. Adsorpt. Sci. Technol. 22:327–335. doi:10.1260/0263617041514884
  • Huang, Z.H., F.Y. Kang, K.M. Liang, and J.M. Hao. 2003. Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds. J. Hazard. Mater. 98:107–115. doi:10.1016/S0304-3894(02)00284-4
  • Jo, W.-K., and C.-H. Yang. 2009. Granular-activated carbon adsorption followed by annular-type photocatalytic system for control of indoor aromatic compounds. Sep. Purif. Technol. 66:438–442. doi:10.1016/j.seppur.2009.02.014
  • Karimnezhad, L., M. Haghighi, and E. Fatehifar. 2014. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2. Front. Environ. Sci. Eng. 8:835–844. doi:10.1007/s11783-014-0695-4
  • Khan, F.I., and A.K. Ghoshal. 2000. Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 13:527–545. doi:10.1016/S0950-4230(00)00007-3
  • Kim, K.-J., C.-S. Kang, Y.-J. You, M.-C. Chung, M.-W. Woo, W.-J. Jeong, N.-C. Park, and H.-G. Ahn. 2006. Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal. Today 111:223–228. doi:10.1016/j.cattod.2005.10.030
  • Lee, J.W., W.G. Shim, and H. Moon. 2004. Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48. Microporous Mesoporous Mater. 73:109–119. doi:10.1016/j.micromeso.2004.04.020
  • Lillo-Ródenas, M.A., D. Cazorla-Amorós, and A. Linares-Solano. 2005. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43:1758–1767. doi:10.1016/j.carbon.2005.02.023
  • Lillo-Ródenas, M.A., A.J. Fletcher, K.M. Thomas, D. Cazorla-Amorós, and A. Linares-Solano. 2006. Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon 44:1455–1463. doi:10.1016/j.carbon.2005.12.001
  • Liu, L., D. Huang, and F. Yang. 2009. Toluene recovery from simulated gas effluent using POMS membrane separation technique. Sep. Purif. Technol. 66:411–416. doi:10.1016/j.seppur.2008.12.023
  • Liu, Z.S., J.Y. Chen, and Y.H. Peng. 2013. Activated carbon fibers impregnated with Pd and Pt catalysts for toluene removal. J. Hazard. Mater. 256–257:49–55. doi:10.1016/j.jhazmat.2013.04.007
  • Lu, C.-Y., M.-Y. Wey, and K.-H. Chuang. 2009. Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nanotube. Appl. Catal. B 90:652–661. doi:10.1016/j.apcatb.2009.04.030
  • Makowski, W., and P. Kuśtrowski. 2007. Probing pore structure of microporous and mesoporous molecular sieves by quasi-equilibrated temperature programmed desorption and adsorption of n-nonane. Microporous Mesoporous Mater. 102:283–289. doi:10.1016/j.micromeso.2007.01.009
  • Manjare, S.D., and A.K. Ghoshal. 2006. Studies on adsorption of ethyl acetate vapor on activated carbon. Ind. Eng. Chem. Res. 45:6563–6569. doi:10.1021/ie0603060
  • Nigar, H., N. Navascues, O. de la Iglesia, R. Mallada, and J. Santamaria. 2015. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection. Sep. Purif. Technol. 151:193–200. doi:10.1016/j.seppur.2015.07.019
  • Raso, R.A., M. Zeltner, and W.J. Stark. 2014. Indoor air purification using activated carbon adsorbers: Regeneration using catalytic combustion of intermediately stored VOC. Ind. Eng. Chem. Res. 53:19304–19312. doi:10.1021/ie503851q
  • Serrano, D.P., G. Calleja, J.A. Botas, and F.J. Gutierrez. 2004. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. Ind. Eng. Chem. Res. 43:7010–7018. doi:10.1021/ie040108d
  • Sharmin, R., and M.B. Ray. 2012. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. J. Air Waste Manage. Assoc. 62(9):1032–1039. doi:10.1080/10962247.2012.695760
  • Son, H., S. Sivakumar, M. Rood, and B. Kim. 2016. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth. J. Hazard. Mater. 301:27–34. doi:10.1016/j.jhazmat.2015.08.040
  • Subrenat, A.S., and P.A. Le Cloirec. 2006. Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: An industrial application. Chem. Eng. Commun. 193:478–486. doi:10.1080/00986440500191768
  • Sullivan, P.D., M. Rood, K. Hay, and S. Qi. 2001. Adsorption and electrothermal desorption of hazardous organic vapors. J. Environ. Eng. 127:217–223. doi:10.1061/(ASCE)0733-9372(2001)127:3(217)
  • Sullivan, P.D., M.J. Rood, G. Grevillot, J.D. Wander, and K.J. Hay. 2004. Activated carbon fiber cloth electrothermal swing adsorption system. Environ. Sci. Technol. 38:4865–4877. doi:10.1021/es0306415
  • Thevenet, F., L. Sivachandiran, O. Guaitella, C. Barakat, and A. Rousseau. 2014. Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review. J. Phys. D Appl. Phys. 47(22):224011–224015. doi:10.1088/0022-3727/47/22/224011
  • Tsai, J.-H., H.-M. Chiang, G.-Y. Huang, and H.-L. Chiang. 2008. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. J. Hazard. Mater. 154:1183–1191. doi:10.1016/j.jhazmat.2007.11.065
  • Xu, F., S. Xian, Q. Xia, Y. Li, and Z. Li. 2013. Effect of textural properties on the adsorption and desorption of toluene on the metal-organic frameworks HKUST-1 and MIL-101. Adsorpt. Sci. Technol. 31:325–340. doi:10.1260/0263-6174.31.4.325
  • Xu, K.J., Q.W. Sun, Y.Q. Guo, and S.H. Dong. 2013. Effects of modifiers on the hydrophobicity of SiO2 films from nano-husk ash. Appl. Surf. Sci. 276:796–801. doi:10.1016/j.apsusc.2013.03.173
  • Yamaguchi, T., K. Aoki, M. Sakurai, and H. Kameyama. 2013. Development of new hybrid VOCs treatment process using activated carbon and electrically heated alumite catalyst. J. Chem. Eng. Japan 46:802–810. doi:10.1252/jcej.13we112
  • Yu, W., L. Deng, P. Yuan, D. Liu, W. Yuan, P. Liu, H. He, Z. Li, and F. Chen. 2015. Surface silylation of natural mesoporous/macroporous diatomite for adsorption of benzene. J. Colloid Interface Sci. 448:545–552. doi:10.1016/j.jcis.2015.02.067
  • Zabihi, M., F. Khorasheh, and J. Shayegan. 2015. Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Adv. 5:5107–5122. doi:10.1039/C4RA14430A
  • Zabihi, M., J. Shayegan, M. Fahimirad, and F. Khorasheh. 2015. Preparation, characterization and kinetic behavior of supported copper oxide catalysts on almond shell-based activated carbon for oxidation of toluene in air. J. Porous Mater. 22:101–118. doi:10.1007/s10934-014-9877-5
  • Zhang, J., X. Liu, R. Blume, A.H. Zhang, R. Schlögl, and D.S. Su. 2008. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322:73–77. doi:10.1126/science.1161916
  • Zhao, X., Q. Ma, and G. Lu. 1998. VOC removal: Comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuels 12:1051–1054. doi:10.1021/ef980113s
  • Zuo, S., F. Liu, R. Zhou, and C. Qi. 2012. Adsorption/desorption and catalytic oxidation of VOCs on montmorillonite and pillared clays. Catal. Commun. 22:1–5. doi:10.1016/j.catcom.2012.02.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.