1,812
Views
14
CrossRef citations to date
0
Altmetric
Technical Papers

Comparison of titania nanotubes and titanium dioxide as supports of low-temperature selective catalytic reduction catalysts under sulfur dioxide poisoning

, &
Pages 292-305 | Received 16 May 2016, Accepted 18 Aug 2016, Published online: 20 Sep 2016

References

  • Balle, P., B. Geiger, and S. Kureti. 2009. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust. Appl. Catal. B Environ. 85:109–119. doi: 10.1016/j.apcatb.2008.07.001.
  • Boningari, T., D.K. Pappas, P.R. Ettireddy, A. Kotrba, and P.G. Smirniotis. 2015. Influence of SiO2 on MiTiO(2) (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: Surface properties and key components in relation to the activity of NOx reduction. Ind. Eng. Chem. Res. 54:2261–2273. doi: 10.1021/ie504709j.
  • Busca, G., L. Lietti, G. Ramis, and F. Berti. 1998. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Appl. Catal. B Environ. 18:1–36. doi: 10.1016/S0926-3373(98)00040-X.
  • Buzanowski, M.A., and R.T. Yang. 1990. Simple design of monolith reactor for selective catalytic reduction of NO for power-plant emission control. Ind. Eng. Chem. Res. 29:2074–2078. doi: 10.1021/ie00106a015.
  • Camposeco, R., S. Castillo, V. Mugica, I. Mejia-Centeno, and J. Marin. 2014. Role of V2O5-WO3/H2Ti3O7-nanotube-model catalysts in the enhancement of the catalytic activity for the SCR-NH3 process. Chem. Eng. J. 242:313–320. doi: 10.1016/j.cej.2014.01.002.
  • Cha, W., E. Park, S. Chin, S.T. Yun, and J. Jurng. 2013. Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal. Appl. Catal. B Environ. 140:708–715. doi: 10.1016/j.apcatb.2013.05.002.
  • Chen, S.A., J.N. Nian, C.C. Tsai, and H. Teng. 2007. TiO2 nanotube-supported Cu as the catalyst for selective NO-reduction with NH3. J. Air Waste Manage Assoc. 57:600–605. doi: 10.3155/1047-3289.57.5.600.
  • Cheng, Y. S., C. Lambert, D.H. Kim, J.H. Kwak, S.J. Cho, and C.H.F. Peden. 2010. The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts. Catal. Today 151:266–270. doi: 10.1016/j.cattod.2010.01.013.
  • Choi, H.J., S.S. Kim, and S.C. Hong. 2013. Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation (vol 62, pg 362, 2012). J Air Waste Manage Assoc. 63:124. doi: 10.1080/10473289.2011.653515.
  • Ettireddy, P.R., N. Ettireddy, S. Mamedov, P. Boolchand, and P.G. Smirniotis. 2007. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal. B Environ. 76:123–134. doi: 10.1016/j.apcatb.2007.05.010.
  • Gupta, R.C. 2000. Proceedings of the International Conference on Environmental Management in Metallurgical Industries (EMMI-2000). New Delhi, India: Allied Publishers.
  • Huang, J.H., Z.Q. Tong, Y. Huang, and J.F. Zhang. 2008. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal. B Environ. 78:309–314. doi: 10.1016/j.apcatb.2007.09.031.
  • Huang, Z.G., Z.P. Zhu, and Z.Y. Liu. 2002. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl. Catal. B Environ. 39:361–368. doi: 10.1016/S0926-3373(02)00122-4.
  • Jiang, B.Q., Y. Liu, and Z.B. Wu. 2009. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. J. Hazard. Mater. 162:1249–1254. doi: 10.1016/j.jhazmat.2008.06.013.
  • Jiang, B.Q., Z.B. Wu, Y. Liu, S.C. Lee, and W.K. Ho, 2010. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. J. Phys. Chem. C 114:4961–4965. doi: 10.1021/jp907783g.
  • Jin, R.B., Y. Liu, Z.B. Wu, H.Q. Wang, and T.T. Gu. 2010. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study. Chemosphere 78:1160–1166. doi: 10.1016/j.chemosphere.2009.11.049.
  • Lee, S.M., S.S. Kim, and S.C. Hong. 2012a. Systematic mechanism study of the high temperature SCR of NOx by NH3 over a W/TiO2 catalyst. Chem. Eng. Sci. 79:177–185. doi: 10.1016/j.ces.2012.05.032.
  • Lee, S.M., K.H. Park, S.S. Kim, D. Kwon, and S.C. Hong. 2012b. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3. J. Air Waste Manage. Assoc. 62:1085–1092, doi: 10.1080/10962247.2012.696532.
  • Lee, T.Y., and H.L. Bai. 2016. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review. AIMS Environ. Sci. 3:249–260. doi: 10.3934/environsci.2016.2.249.
  • Li, L., Y.F. Diao, and X. Liu. 2014. Ce-Mn mixed oxides supported on glass-fiber for low-temperature selective catalytic reduction of NO with NH3. J. Rare Earth 32:409–415. doi: 10.1016/S1002-0721(14)60086-7.
  • Liu, F.D., K, Asakura, H. He, W.P. Shan, X.Y. Shi, C.B. Zhang. 2011a. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 103:369–377. doi: 10.1016/j.apcatb.2011.01.044.
  • Liu, F.D., H. He, Y. Ding, and C.B. Zhang. 2009. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 93:194–204. doi: 10.1016/j.apcatb.2009.09.029.
  • Liu, F.D., H. He, C.B. Zhang, W.P., Shan, and X.Y. Shi. 2011b. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. Catal. Today 175:18–25. doi: 10.1016/j.cattod.2011.02.049.
  • Liu, L., X. Gao, H. Song, C.H. Zheng, X.B. Zhu, Z.Y. Luo, M.J. Ni, and K. F. Cen. 2014a. Study of the promotion effect of iron on supported manganese catalysts for NO oxidation. Aerosol Air Qual. Res. 14:1038–1046. doi: 10.4209/aaqr.2013.04.0136.
  • Liu, Z.M., Y. Li, T.L. Zhu, S. Hang, and J. Zhu. 2014b. Selective catalytic reduction of NOx by NH3 over Mn-promoted V2O5/TiO2 catalyst. Ind. Eng. Chem. Res. 53:12964–12970. doi: 10.1021/ie501887f.
  • Liu, Z.M., Y. Yi, S.X. Zhang, T.L. Zhu, J.Z. Zhu, and J.G. Wang. 2013. Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures. Catal. Today 216:76–81. doi: 10.1016/j.cattod.2013.06.009.
  • Liu, Z.M., J.Z. Zhu, J.H. Li, L.L. Ma, and S.I. Woo. 2014c. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 6:14500–14508. doi: 10.1021/am5038164.
  • Lu, X.N., C.Y. Song, C.C. Chang, Y.X. Teng, Z.S. Tong, and X.L. Tang. 2014. Manganese oxides supported on TiO2-graphene nanocomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature. Ind. Eng. Chem. Res. 53:11601–11610. doi: 10.1021/ie5016969.
  • Marban, G., and A. Fuertes. B. 2001. Low-temperature SCR of NOx with NH3 over Nomex (TM) rejects-based activated carbon fibre composite-supported manganese oxides: Part II. Effect of procedures for impregnation and active phase formation. Appl. Catal. B Environ. 34:55–71. doi: 10.1016/S0926-3373(01)00197-7.
  • Mhamdi, M., S. Khaddar-Zine, and A. Ghorbel. 2009. Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction. Appl. Catal. A Gen. 357:42–50. doi: 10.1016/j.apcata.2008.12.036.
  • Min, Y.L., K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, and Y.G. Zhang. 2012. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J. 193:203–210. doi: 10.1016/j.cej.2012.04.047.
  • Pappas, D.K., T. Boningari, P. Boolchand, and P.G. Smirniotis. 2016. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3. J. Catal. 334:1–13. doi: 10.1016/j.jcat.2015.11.013.
  • Park, T.S., S.K. Jeong, S.H. Hong, and S.C. Hong. 2001. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Ind. Eng. Chem. Res. 40:4491–4495. doi: 10.1021/ie010218+.
  • Richter, M., A. Trunschke, U. Bentrup, K.W. Brzezinka, E. Schreier, M. Schneider, M.M. Pohl, and R. Fricke. 2002. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts. J. Catal. 206:98–113. doi: 10.1006/jcat.2001. 3468.
  • Saqer, S.M., D.I. Kondarides, and X.E. Verykios. 2011. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on gamma-Al2O3. Appl. Catal. B Environ. 103:275–286. doi: 10.1016/j.apcatb.2011.01.001.
  • Shen, B.X., Y.Y. Wang, F.M. Wang, and T. Liu. 2014. The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature. Chem. Eng. J. 236:171–180. doi: 10.1016/j.cej.2013.09.085.
  • Shen, B.X., Y. Yao, H.Q. Ma, and T. Liu. 2011. Ceria modified MnOx/TiO2-pillared clays catalysts for selective catalytic reduction of NO with NH3 at low temperature. Chin. J. Catal. 32:1803–1811. doi: 10.1016/S1872-2067(10)60269-0.
  • Shu, Y., T. Aikebaier, X. Quan, S. Chen, and H.T. Yu. 2014. Selective catalytic reaction of NOx with NH3 over Ce-Fe/TiO2-loaded wire-mesh honeycomb: Resistance to SO2 poisoning. Appl. Catal. B Environ. 150:630–635. doi: 10.1016/j.apcatb.2014.01.008.
  • Smirniotis, P.G., P.M. Sreekanth, D.A. Pena, and R.G. Jenkins. 2006. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Ind. Eng. Chem. Res. 45:6436–6443. doi: 10.1021/ie060484t.
  • Su, Y.X., B.X. Fan, L.S. Wang, Y.F. Liu, B.C. Huang, M.L. Fu, L.M. Chen, and D.Q. Ye. 2013. MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3. Catal. Today 201:115–121. doi: 10.1016/j.cattod.2012.04.063.
  • Tang, X.L., J. M, Hao., H. H. Yi, and J. H. Li. 2007. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catal. Today 126:406–411. doi: 10.1016/j.cattod.2007.06.013.
  • Thamaphat, K., P. Limsuwan, and B. Ngotawornchai. 2008. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. Nat. Sci. 42:357–361.
  • Thirupathi, B., and P.G. Smirniotis. 2011. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B Environ. 110:195–206. doi: 10.1016/j.apcatb.2011.09.001.
  • Tong, H., and Y. Huang. 2012. The effects of manganese precursors on Mn-based/TiO2 catalysts for catalytic reduction of NO with NH3. J. Air Waste Manage. Assoc. 62:271–277. doi: 10.1080/10473289.2011.646350.
  • Wallin, M., S. Forser, P. Thormahlen, and M. Skoglundh. 2004. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Ind. Eng. Chem. Res. 43:7723–7731. doi: 10.1021/ie049695t.
  • Wang, H.Q., X.B. Chen, X.L. Weng, Y. Liu, S. Gao, and Z.B. Wu. 2011. Enhanced catalytic activity for selective catalytic reduction of NO over titanium nanotube-confined CeO2 catalyst. Catal. Commun. 12:1042–1045. doi: 10.1016/j.catcom.2011.03.005.
  • Wu, Z.B., R.B. Jin, Y. Liu, and H.Q. Wang. 2008. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun. 9:2217–2220. doi: 10.1016/j.catcom.2008.05.001.
  • Wu, Z.B., R.B. Jin, H.Q. Wang, and Y. Liu. 2009. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catal. Commun. 10:935–939. doi: 10.1016/j.catcom.2008.12.032.
  • Xiong, L., Y. Yang, J.X. Mai, W.L. Sun, C.Y. Zhang, D.P. Wei, Q. Chen, and J.R. Ni. 2010. Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 156:313–320. doi: 10.1016/j.cej.2009.10.023.
  • Xu, H.D., Z.T. Fang, Y. Cao, S. Kong, T. Lin, M.C. Gong, and Y.Q. Chen. 2012a. Influence of Mn/(Mn plus Ce) ratio of MnOx-CeO2/WO3-ZrO2 monolith catalyst on selective catalytic reduction of NOx with ammonia. Chin. J. Catal. 33:1927–1937. doi: 10.1016/S1872-2067(11)60467-1.
  • Xu, H.D., Q.L. Zhang, C.T. Qiu, T. Lin, M.C. Gong, and Y.Q. Chen. 2012b. Tungsten modified MnOx-CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chem. Eng. Sci. 76:120–128. doi: 10.1016/j.ces.2012.04.012.
  • Yao, G.H., K.T. Gui, and F. Wang. 2010. Low-temperature de-NOx by selective catalytic reduction based on iron-based catalysts. Chem. Eng. Technol. 33:1093–1098. doi: 10.1002/ceat.201000015.
  • Yu, J., F, Guo., Y.L. Wang, J.H. Zhu, Y.Y. Liu, F.B. Su, S.Q. Gao, and G.W. Xu. 2010. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Appl. Catal. B Environ. 95:160–168. doi: 10.1016/j.apcatb.2009.12.023.
  • Zhao, B, X.W. Liu, Z.J. Zhou, H.Z. Shao, C. Wang, M.H. Xu. 2015. Mercury oxidized by V2O5-MoO3/TiO2 under multiple components flue gas: An actual coal-fired power plant test and a laboratory experiment. Fuel Process. Technol. 134:198–204. doi: 10.1016/j.fuproc.2015.01.034.
  • Zhou, Z.J., X.W. Liu, B. Zhao, Z.G. Chen., H.Z, Shao., L.L. Wang, and M.H. Xu. 2015. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants. Fuel Process. Technol. 131:99–108. doi: 10.1016/j.fuproc.2014.11.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.