6,077
Views
44
CrossRef citations to date
0
Altmetric
Technical Papers

A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste

, , &
Pages 358-370 | Received 06 Jun 2016, Accepted 21 Sep 2016, Published online: 04 Oct 2016

References

  • Adibfar, M., T. Kaghazchi, N. Asasian, and M. Soleimani. 2014. Conversion of poly(ethylene terephthalate) waste into activated carbon: Chemical activation and characterization. Chem. Eng. Technol. 37(6):979–86. doi:10.1002/ceat.201200719.
  • Barreiro, A., S. Hampel, M.H. Rummeli, C. Kramberger, A. Gruneis, K. Biedermann, et al. 2006. Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B 110(42):20973–77. doi:10.1021/jp0636571.
  • Bazargan, A., and G. McKay. 2012. A review—Synthesis of carbon nanotubes from plastic wastes. Chem. Eng. J. 195–96:377–91. doi:10.1016/j.cej.2012.03.077.
  • Berkmansa, A.J., M. Jagannatham, S. Priyank, and P. Haridoss. 2014. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Manage. 34(11):2139–45. doi:10.1016/j.wasman.2014.07.004.
  • Bhattacharjee, A., A. Rooj, D. Roy, and M. Roy. 2014. Thermal decomposition study of ferrocene [(C5H5)2Fe]. J. Exp. Phys. article ID 513268. doi:10.1155/2014/513268.
  • Chuvilin, A., U. Kaiser, E. Bichoutskaia, N.A. Besley, and A.N. Khlobystov. 2010. Direct transformation of graphene to fullerene. Nat. Chem. 2:450–53. doi:10.1038/nchem.644.
  • Deng, J., Y. You, V. Sahajwalla, and R.K. Joshi. 2016. Transforming waste into carbon-based nanomaterials. Carbon 96:105–15. doi:10.1016/j.carbon.2015.09.033.
  • Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund. 1996. Science of Fullerenes and Carbon Nanotubes. London, UK: Academic Press.
  • Dresselhaus, M.S., A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito. 2010.Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3):751–58. doi:10.1021/nl904286r.
  • Esfandiari, A., T. Kaghazchi, and M. Soleimani. 2012. Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. J. Taiwan Inst. Chem. Eng. 43(4):631–637. doi:10.1016/j.jtice.2012.02.002.
  • Ferrari, A.C., J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al. 2006. Raman spectrum of graphene and graphene layers. Phys. Rev. Let. 97(187401):1–4. doi:10.1103/PhysRevLett.97.187401.
  • Giguere, P.A., and I.D. Liu. 1957. Kinetics of thermal decomposition of hydrogen peroxide vapor. Can. J. Chem. 35(4):283–93. doi:10.1139/v57-042.
  • Goroff, N.S. 1996. Mechanism of fullerene formation. Acc. Chem. Res. 29:77–83. doi:10.1021/ar950162d.
  • Guisinger, N.P., and M.S. Arnold. 2010. Beyond silicon: Carbon-based nanotechnology. MRS Bull. 35(4):273–79. doi:10.1557/mrs2010.729.
  • Hoffman, E.N., G. Yushin, M.W. Barsoum, and Y. Gogotsi. 2005. Synthesis of carbide-derived carbon by chlorination of Ti2AlC. Chem. Mater. 17(9):2317–22. doi:10.1021/cm047739i.
  • Hwang, S.G., J.E. Hong, G.O. Kim, H.M. Jeong, and K.S. Ryu. 2013. Graphene anchored with NiO–MnO2 nanocomposites for use as an electrode material in supercapacitors. ECS Solid State Lett. 2(1):M8–11. doi:10.1149/2.010301ssl.
  • Jin, S.H., D.H. Kim, G.H. Jun, S.H. Hong, and S. Jeon. 2013. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2):1239–45. doi:10.1021/nn304675g.
  • Laszlo, K., A. Bota, L. G. Nagy, and I. Cabasso. 1999. Porous carbon from polymer waste materials. Colloids Surf. A Physicochem. Eng. Aspects 151:311–20. doi:10.1016/S0927-7757(98)00390-2.
  • Li, Z.Y., W.H. Zhang, Y. Luo, J.L. Yang, and J.G. Hou. 2009. How graphene is cut upon oxidation. J. Am. Chem. Soc. 131(18):6320–21. doi:10.1021/ja8094729.
  • Liu, W., C. Lu, X. Wang, K. Liang, and B.K. Tay. 2015. In-situ fabrication three-dimensional ultrathin graphite/carbon nanotubes/NiO composite as binder-free electrode for high-performance energy storage. J. Mater. Chem. A 3(2):624–33. doi:10.1039/c4ta04023f.
  • Lozovik, Y.E., and A.M. Popov. 1997. Formation and growth of carbon nanostructures: Fullerenes, nanoparticles, nanotubes and cones. Physics-Uspekhi 40(7):751–74. doi:10.1070/PU1997v040n07ABEH000253.
  • Malard, L.M., M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus. 2009. Raman spectroscopy in graphene. Phys. Rep. 473 (5–6):51–87. doi:10.1016/j.physrep.2009.02.003.
  • Mishra, S., A.S. Goje, and V.S. Zope. 2003. Chemical recycling, kinetics, and thermodynamics of poly (ethylene terephthalate) (PET) waste powder by nitric acid hydrolysis. Polym. React. Eng. 11(1):79–99. doi:10.1081/PRE-120018586.
  • Mordkovich, V.Z. 2000. The observation of large concentric shell fullerenes and fullerene-like nanoparticles in laser pyrolysis carbon blacks. Chem. Mater. 12:2813–18. doi:10.1021/cm0001814.
  • Motiei, M., Y.R. Hacohen, J.C. Moreno, and A. Gedanken. 2001. Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction. J. Am. Chem. Soc. 123(35):8624–25. doi:10.1021/ja015859a.
  • Ni, Z.H., T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen. 2008. Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening. ACS Nano 2(11):2301–5. doi:10.1021/nn800459e.
  • Osawa, E. 1970. The original conjecture of a stable C60 molecule. Kagaku (Kyoto) 25: 854–63 (in Japanese); Chem. Abstr. 1971, 74:75698v.
  • Parra, J.B., C.O. Ania, A. Arenillas, F. Rubiera, J.M. Palacios, and J.J. Pis. 2004. Textural development and hydrogen adsorption of carbon materials from PET waste. J. Alloys Compounds 379:280–89. doi:10.1016/j.jallcom.2004.02.044.
  • Peng, Y., and H. Liu. 2006. Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 45(19):6483–88. doi:10.1021/ie0604627.
  • Pol, S.V., V.G. Pol, D. Sherman, and A. Gedanken. 2009. A solvent free process for the generation of strong, conducting carbon spheres by the thermal degradation of waste polyethylene terephthalate. Green Chem. 11:448–51. doi:10.1039/B819494G.
  • Pol, V.G. 2010. Upcycling: Converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environ. Sci. Technol. 44(12):4753–59. doi:10.1021/es100243u.
  • Pol, V.G., and M.T. Michael. 2011. Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells. Energy Environ. Sci. 4(5):1904–1912. doi:10.1039/c0ee00256a.
  • Pol, V.G., and P. Thiyagarajan. 2010. Remediating plastic waste into carbon nanotubes. J. Environ. Monit. 12:455–459. doi:10.1039/B914648B.
  • Rao, C.N., A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj. 2009.Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42):7752–77. doi:10.1002/anie.200901678.
  • Reina, A., X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, et al. 2009. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1):30–35. doi:10.1021/nl801827v.
  • Seraphin, S., S. Wang, D. Zhou, and J. Jiao. 1994. Strings of spherical carbon clusters grown in a catalytic arc discharge. Chem. Phys. Lett. 228(6):506–12. doi:10.1016/0009-2614(94)00973-2.
  • Sergiienko, R., E. Shibata, S. Kim, T. Kinota, and T. Nakamura. 2009. Nanographite structures formed during annealing of disordered carbon containing finely-dispersed carbon nanocapsules with iron carbide cores. Carbon 47(4):1056–65. doi:10.1016/j.carbon.2008.12.029.
  • Shan, C.S., H. Tang, T. Wong, L. He, and S.T. Lee. 2012. Facile synthesis of a large quantity of graphene by chemical vapour deposition: An advanced catalyst carrier. Adv. Mater. 24(18):2491–95. doi:10.1002/adma.201200480.
  • Shen, Y., and A.C. Lua. 2013. A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Sci. Rep. 3: article number 3037. doi:10.1038/srep03037.
  • Shioyama, H., and T. Akita. 2003. A new route to carbon nanotubes. Carbon 41(1):179–11. doi:10.1016/S0008-6223(02)00278-6.
  • Slanina, Z., F. Uhlík, S. Lee, and S. Nagase. 2008. Fullerenic structures: Computational concepts of their stability, DFT calculations on fullerenes and carbon nanotubes. Research Signpost 2008:1–29. http://www.chem.ccu.edu.tw/~sll/publications/194.pdf (accessed November 18, 2016)
  • Smalley, R.E. 1992. Self-assembly of the fullerenes. Acc. Chem. Res. 25:98–105. doi:10.1021/ar00015a001.
  • Szabó, A., C. Perri, A. Csató, G. Giordano, D. Vuono, and J.B. Nagy. 2010. Synthesis methods of carbon nanotubes and related materials. Materials 3(5):3092–140. doi:10.3390/ma3053092.
  • Torreilles, J., and M.C. Guerin. 1990. Nickel(II) as a temporary catalyst for hydroxyl radical generation. FEBS Lett. 272(1–2):58–60. doi:10.1016/0014-5793(90)80448-R.
  • Viculis, L.M., J.J. Mack, and R.B. Kaner. 2003. A chemical route to carbon nanoscrolls. Science 299(5611):1361. doi:10.1126/science.1078842.
  • Xing, W., G. Lalwani, I. Rusakova, and B. Sitharaman. 2014. Degradation of graphene by hydrogen peroxide. Part. Part. Syst. Charact. 31(7):745–50. doi:10.1002/ppsc.201300318.
  • Xiu-Yun, C. 2013. Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China. Int. Nano Lett. 3:6. doi:10.1186/2228-5326-3-6.
  • Zeng, Q., Z. Li, and Y. Zhou. 2006. Synthesis and application of carbon nanotubes. J. Nat. Gas Chem. 15(3):235–246. doi:10.1016/S1003-9953(06)60032-7.
  • Zhang, J., X. Wang, G. Qi, B. Li, Z. Song, H. Jiang, X. Zhang, and J. Qiao. 2016. A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres. Carbon 96: 864–70. doi:10.1016/j.carbon.2015.10.045.
  • Zhuo, C., and Y.A. Levendis. 2014. Upcycling waste plastics into carbon nanomaterials: A review. J. Appl. Polym. Sci. 131(4):1–14. doi:10.1002/app.39931.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.