973
Views
7
CrossRef citations to date
0
Altmetric
Technical Papers

Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite

, &
Pages 475-487 | Received 18 Apr 2016, Accepted 11 Oct 2016, Published online: 10 Mar 2017

References

  • Aguilar, M.I., J. Saez, M. Llorens, A. Soler, J.F. Ortuno, V. Meseguer, and A. Fuentes. 2005. Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere 58:47–56. doi:10.1016/j.chemosphere.2004.09.008
  • American Public Health Association (APHA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF). 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington, DC: APHA, AWWA, and WPCF.
  • American Public Health Association (APHA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF). 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, DC: APHA, AWWA, and WPCF.
  • Amokrane, A., C. Comel, and J. Veron. 1997. Landfill leachates pre-treatment by coagulation–flocculation. Water Res. 31:2775–82. doi:10.1016/S0043-1354(97)00147-4
  • Artiola, F.J., and H.W. Fuller. 1982. Humic substances in landfill leachates: I. Humic acid extraction and identification. J. Environ. Qual. 11:663–69.
  • ASTM International. 2012. Standard Test Methods for Chemical Oxygen Demand of Water. ASTM D1252-06. West Conshocken, PA: ASTM International.
  • Bae, M.J., J.S. Kim, and Y.S. Park. 2012. Evaluation of changes in effluent quality from industrial complexes on the Korean nationwide scale using a self-organizing map. Int. J. Environ. Res. Public Health. 9:1182–1200. doi:10.3390/ijerph9041182
  • Barbusinski, K., and K. Filipek. 2001. Use of Fenton’s reagent for removal of pesticides from industrial wastewater. Pol. J. Environ. Stud. 10:207–12.
  • Barbusinski, K., and J. Majewski. 2003. Discoloration of azo dye acid red 18 by Fenton reagent in the presence of iron powder. Pol. J. Environ. Stud. 12:151–55.
  • Barreto, M.R., F.T. Silva, and T.C.B. Paiva. 2008. Combined zerovalent iron and Fenton processes for the treatment of Brazilian TNT industry wastewater. J. Hazard. Mater. 165:1224–28.
  • Benatti, C.T., C.R.G. Tavares, and T.A. Guedes. 2006. Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. J. Environ. Manage. 80:66–74. doi:10.1016/j.jenvman.2005.08.014
  • Benatti, C.T., and C.R.G. Tavares. 2012. Fenton’s process for the treatment of mixed waste chemicals.Faculdade Ingá–UNINGÁ, Universidade Estadual de Maringá–UEM, Brazil. Unpublished.
  • Bergendahla, J.A., and T.P. Thies. 2004. Fenton’s oxidation of MTBE with zero-valent iron. Water Res. 38:327–34.
  • Boussahel, R., D. Harik, M. Mammar, and S. Lamara-Mohamed. 2007. Degradation of obsolete DDT by Fenton oxidation with zero-valent iron. Desalination 206:369–72. doi:10.1016/j.desal.2006.04.059
  • Carlos, A., E.D. Torres-Socías, J.A. Peres, M.I. Maldonado, I. Oller, S. Malato, and M.S. Lucas. 2015. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Mater. 286:261–68.
  • Dabhade, M.A., M.B. Saidutta, and D.V.R. Murthy. 2009. Adsorption of phenol on granular activated carbon from nutrient medium: Equilibrium and kinetic study. Int. J. Environ. Res. 3:557–68.
  • Deng, Y. 2007. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. J. Hazard. Mater. 146:334–40. doi:10.1016/j.jhazmat.2006.12.026
  • Diamadopoulos, E. 1994. Characterization and treatment of recirculation-stabilized leachate. Water Res. 28:2439–45. doi:10.1016/0043-1354(94)90062-0
  • Ehrig, H.J. 1982. Quality and quantity of sanitary landfill leachate. Waste Manage. Res. 1:53–68. doi:10.1016/0734-242X(83)90024-1
  • Giasuddin, A.B.M., S.R. Kanel, and H. Choi. 2007. Adsorption of humic acid onto nanoscale zero-valent iron and its effect on arsenic removal. Environ. Sci. Technol. 41:2022–27. doi:10.1021/es0616534
  • Hanna, K., T. Kone, G. Medjahdi. 2008. Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation. Catal. Commun. 9:955–59. doi:10.1016/j.catcom.2007.09.035
  • Hermosilla, D., M. Cortijo, and C.P. Huang. 2009. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ. 407:3473–81. doi:10.1016/j.scitotenv.2009.02.009
  • Huang, C.P., C. Dong, and Z. Tang. 1993. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manage. 13:361–77. doi:10.1016/0956-053X(93)90070-D
  • Joo, S.H., and I.F. Cheng. 2006. Nanotechnology for Environmental Remediation. New York NY: Springer.
  • Jung, D., Z. Yongsheng, Z. Weihong, and H. Mei. 2009. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J. Hazard. Mater. 161:224–30.
  • Kallel, M., C. Belaida, T. Mechichib, M. Ksibia, and B. Elleucha. 2009a. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chem. Eng. J. 150:391–95. doi:10.1016/j.cej.2009.01.017
  • Kallel, M., C. Belaida, R. Boussahel, M. Ksibi, A. Montiel, and B. Elleuch. 2009b. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. J. Hazard. Mater. 163:550–554.
  • Kanel, S.R., B. Manning, L. Charlet, and H. Choi. 2005. Removal of arsenic(III) from groundwater by nanoscale zero valent iron. Environ. Sci. Technol. 39:1291–98. doi:10.1021/es048991u
  • Kang, K.H., H.S. Shin, and H. Park. 2002a. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res. 36:4023– 32. doi:10.1016/S0043-1354(02)00114-8
  • Kang, S.F., C.H. Liao, and M.C. Chen. 2002b. Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46:923–28. doi:10.1016/S0045-6535(01)00159-X
  • Klara, R., K.D. Frank, and G. Anett. 2012. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance. J. Hazard. Mater. 241:433–40.
  • Langlais, B., D.A. Reckhow, and D.R. Brink, eds. 1991. Ozone in Water Treatment: Allocation and Engineering. Chelsea MI: Lewis.
  • Lema, J.M., R. Mendez, and R. Blazquez. 1988. Characteristics of landfill leachates and alternatives for their treatment: a review. Water Air Soil Pollut. 40:223–50.
  • Li, X.Q., and W.X. Zhang. 2007. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C 111:6939–46. doi:10.1021/jp0702189
  • Mallampati, S.R., Y. Mitoma, T. Okuda, S. Sakita, and C. Simion. 2014a. Preferential removaland immobilization of stable and radioactivecesium in contaminated fly ash with nanometallic Ca/CaO methanolsuspension. J. Hazard. Mater. 279:52–59.
  • Mallampati, S.R., Y. Mitoma, T. Okuda, S. Sakita, and C. Simion. 2014b. Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture. Environ. Sci. Pollut. Res. 21:9270–77. doi:10.1007/s11356-014-2830-y
  • Mallampati, S.R., Y. Mitomab, T. Okuda, C. Simiond, and B.K. Lee. 2015. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable andradioactive cesium in contaminated soils. J. Hazard. Mater. 297:74–82. doi:10.1016/j.jhazmat.2015.04.071
  • Mallampati, S.R., T. Okuda, Y. Mitoma, S. Sakita, and M. Kakeda. 2012. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallicCa/CaO dispersion mixture. Chemosphere 89:717–23. doi:10.1016/j.chemosphere.2012.06.030
  • Marttinen, S.K., R.H. Kettunen, K.M. Sormunen, R.M. Soimasuo, and J.A. Rintala. 2002. Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–58. doi:10.1016/S0045-6535(01)00150-3
  • Miled, W., S. Soula, and N. Ladhari. 2015. Treatment of water soluble dyes in real textile wastewater by Fenton’s process. Int. J. Sci. Res. Eng. Technol. 3:102–6.
  • Mitoma, Y., S.R. Mallampati, H. Miyata, and M. Kakeda. 2013. Decomposition of polychlorinated biphenyls in soil with a dispersion mixture of metallic calcium and calcium oxide. Arch. Environ. Contam. Toxicol. 64:180–86. doi:10.1007/s00244-012-9829-5
  • Mott, H.V., K.E. Hartz, and D.R. Yonge. 1987. Landfill leachates. J. Environ. Eng. 113:476–85. doi:10.1061/(ASCE)0733-9372(1987)113:3(476)
  • Nwabanne, J.T., O.D. Onukwuli, and C.M. Ifeakandu. 2009. Biokinetics of anaerobic digestion of municipal waste. Int. J. Environ. Res. 3:511–16.
  • O’Melia, C.R. 1972. Coagulation and flocculation. In Physicochemical Processes for Water Quality Control, ed. W.J. Weber, Jr., chap. 2. New York, NY: Wiley-Interscience.
  • Perdigón-Melón, J.A., J.B. Carbajo, A.L. Petre, R. Rosal, and E. García-Calvo. 2010. Coagulation–Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater. J. Hazard. Mater. 181:127–32. doi:10.1016/j.jhazmat.2010.04.104
  • Petruzzelli, D., A. Volpe, N. Limoni, and R. Passino. 2000. Coagulants removal and recovery from water clarifier sludge. Water Res. 34:2177–82.doi:10.1016/S0043-1354(99)00357-7
  • Renou, S., J.G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin. 2008. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 150:468–93.doi:10.1016/j.jhazmat.2007.09.077
  • Sincero, A.P., and G.A. Sincero. 2003. Physical-Chemical Treatment of Water and Wastewater. Boca Raton FL: CRC Press.
  • Sun, Z.X., F.W. Su, W. Forsling, and P.O. Samskog. 1998. Surface characteristics of magnetite in aqueous suspension. J. Colloid Interface Sci. 197:151–59. doi:10.1006/jcis.1997.5239
  • Taha, M.R., and A.H. Ibrahim. 2014. Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J. Environ. Chem. Eng. 2:1–8. doi:10.1016/j.jece.2013.11.021
  • Tatsi, A.A., A.I. Zouboulis, K.A. Matis, and P. Samaras. 2003. Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53:737–44. doi:10.1016/S0045-6535(03)00513-7
  • Trebouet, D., J.P. Schlumpf, P. Jaouen, F. Quemeneur. 2001. Stabilized landfill leachate treatment by combined physicochemical- nanofiltration processes. Water Res. 35:2935–42. doi:10.1016/S0043-1354(01)00005-7
  • Trujillo, D., X. Font, A. Sanchez. 2006. Use of Fenton reaction for the treatment of leachate from composting of different wastes. J. Hazard. Mater. 138:201–204. doi:10.1016/j.jhazmat.2006.05.053
  • Uemura, S.H. 2010. Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. Int. J. Environ. Res. 4:33–40.
  • U.S. Environmental Protection Agency. 1995. Decision Maker’s Guide to Solid Waste Management, Vol. II. http://www.epa.gov/garbage/dmg2.htm.
  • Uzum, C., T. Shahwan, A.E. Eroglu, K.R. Hallam, T.B. Scott, and I. Lieberwirth. 2009. Synthesis and characterization of kaolinite-supported zerovalent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 43172–81. doi:10.1016/j.clay.2008.07.030
  • Vedrenne, M., R. Vasquez-Medrano, D. Prato-Garcia, B.A. Frontana-Uribe, and J.G. Ibanez. 2012. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. J. Hazard. Mater. 205:208–215. doi:10.1016/j.jhazmat.2011.12.060
  • Walling, C., and S. Kato. 1971. The oxidation of alcohols by Fenton’s reagent: The effect of copper ion. J. Am. Chem. Soc. 93:4275–81. doi:10.1021/ja00746a031
  • Wang, Z.P., Z. Zhang, Y.J. Lin, N.S. Deng, T. Tao, and K. Zhuo. 2002. Landfill leachate treatment by acoagulation–photooxidation process. J. Hazard. Mater. 95:153–159. doi:10.1016/S0304-3894(02)00116-4
  • Xue, X.F., K. Hanna, N.S. Deng. 2009. Fenton-like oxidation of rhodamine B in the presence of two types of iron(II, III) oxide. J. Hazard. Mater. 166:407–414. doi:10.1016/j.jhazmat.2008.11.089
  • Zhang, H., H.J. Choi, P. Canazo, C.P. Huang. 2009. Multivariate approach to the Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 161:1306–1312. doi:10.1016/j.jhazmat.2008.04.126
  • Zhang, H., H.J. Choi, and C. Huang. 2005. Optimization of Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 125:166–174. doi:10.1016/j.jhazmat.2005.05.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.