8,951
Views
112
CrossRef citations to date
0
Altmetric
Technical Papers

Preparation and characterization of activated carbons from tobacco stem by chemical activation

, , , , , , & show all
Pages 713-724 | Received 25 Apr 2016, Accepted 04 Jan 2017, Published online: 10 Apr 2017

References

  • Abioye, A.M., and F.N. Ani. 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew. Sustain. Energy Rev. 52:1282–93. doi:10.1016/j.rser.2015.07.129
  • Açıkyıldız, M., A. Gürses, and S. Karaca. 2014. Preparation and characterization of activated carbon from plant wastes with chemical activation. Microporous Mesoporous Mater. 198:45–9. doi:10.1016/j.micromeso.2014.07.018
  • Adinata, D., W.M. Wan-Daud, and M.K. Aroua. 2007. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technol. 98(1):145–9. doi:10.1016/j.biortech.2005.11.006
  • Ding, L., B. Zou, H. Liu, Y. Li, Z. Wang, Y. Su, Y. Guo, and X. Wang. 2013. A new route for conversion of corncob to porous carbon by hydrolysis and activation. Chem. Eng. J. 225:300–5. doi:10.1016/j.cej.2013.03.090
  • Falco, C., J.P. Marco-Lozar, D. Salinas-Torres, E. Morallón, D. Cazorla-Amorós, M.M. Titirici, and D. Lozano-Castelló. 2013. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–55. doi:10.1016/j.carbon.2013.06.017
  • Figueiredo, J.L., and M.F.R. Pereira. 2010. The role of surface chemistry in catalysis with carbons. Catal. Today 150(1–2):2–7. doi:10.1016/j.cattod.2009.04.010
  • Fuertes, A.B., and M. Sevilla. 2015. High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon 94:41–52. doi:10.1016/j.carbon.2015.06.028
  • Gorgulho, H.F., J.P. Mesquita, F. Gonçalves, M.F.R. Pereira, and J.L. Figueiredo. 2008. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon 46(12):1544–55. doi:10.1016/j.carbon.2008.06.045
  • Herrmann, C., C. Idler, and M. Heiermann. 2016. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresource Technol. 206:23–35. doi:10.1016/j.biortech.2016.01.058
  • Hosoya, T., H. Kawamoto, and S. Saka. 2007. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J. Anal. Appl. Pyrolysis 78(2):328–36. doi:10.1016/j.jaap.2006.08.008
  • Jain, A., R. Balasubramanian, and M.P. Srinivasan. 2016. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 283:789–805. doi:10.1016/j.cej.2015.08.014
  • Jiménez-Cordero, D., F. Heras, M.A. Gilarranz, and E. Raymundo-Piñero. 2014. Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes. Carbon 71:127–38. doi:10.1016/j.carbon.2014.01.021
  • Kilic, M., E. Apaydin-Varol, and A.E. Putun. 2011. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189(1–2):397–403. doi:10.1016/j.jhazmat.2011.02.051
  • Kohl, S., A. Drochner, and H. Vogel. 2010. Quantification of oxygen surface groups on carbon materials via diffuse reflectance FT-IR spectroscopy and temperature programmed desorption. Catal. Today 150(1):67–70. doi:10.1016/j.cattod.2009.05.016
  • Köseoğlu, E., and C. Akmil-Başar. 2015. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 26(3):811–8. doi:10.1016/j.apt.2015.02.006
  • Kumar, A., and H. Mohan Jena. 2015. High surface area microporous activated carbons prepared from fox nut (Euryale ferox) shell by zinc chloride activation. Appl. Surf. Sci. 356:753–61. doi:10.1016/j.apsusc.2015.08.074
  • Li, L., S. Liu, and J. Liu. 2011. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard. Mater. 192(2):683–90. doi:10.1016/j.jhazmat.2011.05.069
  • Li, W., J. Peng, L. Zhang, H. Xia, N. Li, K. Yang, and X. Zhu. 2008a. Investigations on carbonization processes of plain tobacco stems and H3PO4-impregnated tobacco stems used for the preparation of activated carbons with H3PO4 activation. Ind. Crops Prod. 28(1):73–80. doi:10.1016/j.indcrop.2008.01.006
  • Li, W., L. Zhang, J. Peng, N. Li, and X. Zhu. 2008b. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind. Crops Prod. 27(3):341–7. doi:10.1016/j.indcrop.2007.11.011
  • Lillo-Ródenas, M.A., D. Cazorla-Amorós, and A. Linares-Solano. 2003. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 41(2):267–75. doi:10.1016/S0008-6223(02)00279-8
  • Liou, T.H. 2010. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158(2):129–42. doi:10.1016/j.cej.2009.12.016
  • Loh, S.K. In press. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manage. doi:10.1016/j.enconman.2016.08.081
  • Lozano-Castelló, D., M.A. Lillo-Ródenas, D. Cazorla-Amorós, and A. Linares-Solano. 2001. Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 39(5):741–9. doi:10.1016/S0008-6223(00)00185-8
  • Lua, A.C., and T. Yang. 2005. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J. Colloid Interface Sci. 290(2):505–13. doi:10.1016/j.jcis.2005.04.063
  • Ma, X., L. Li, S. Wang, M. Lu, H. Li, W. Ma, and T.C. Keener. 2016. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption. Appl. Surf. Sci. 369:390–7. doi:10.1016/j.apsusc.2016.01.274
  • Mechati, F., C. Bouchelta, M.S. Medjram, R. Benrabaa, and N. Ammouchi. 2015. Effect of hard and soft structure of different biomasses on the porosity development of activated carbon prepared under N2/microwave radiations. J. Environ. Chem. Eng. 3(3):1928–38. doi:10.1016/j.jece.2015.07.007
  • Molina-Sabio, M., and F. Rodrı́guez-Reinoso. 2004. Role of chemical activation in the development of carbon porosity. Colloids Surf. A Physicochem. Eng. Aspects 241(1–3):15–25. doi:10.1016/j.colsurfa.2004.04.007
  • Mumba, P.P., and R. Phiri. 2008. Environmental impact assessment of tobacco waste disposal. Int. J. Environ. Res. 2(3):225–30.
  • Muniandy, L., F. Adam, A.R. Mohamed, and E.P. Ng. 2014. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 197:316–23. doi:10.1016/j.micromeso.2014.06.020
  • Oh, G.H., C.H. Yun, and C.R. Park. 2003. Role of KOH in the one-stage KOH activation of cellulosic biomass. Carbon Lett. 4(4):180–4.
  • Ozdemir, I., M. Şahin, R. Orhan, and M. Erdem. 2014. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process. Technol. 125:200–6. doi:10.1016/j.fuproc.2014.04.002
  • Saka, C. 2012. BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrol. 95:21–4. doi:10.1016/j.jaap.2011.12.020
  • Sedghi, S., S.H. Madani, C. Hu, A. Silvestre-Albero, W. Skinner, P. Kwong, P. Pendleton, R.J. Smernik, F. Rodríguez-Reinoso, and M.J. Biggs. 2015. Control of the spatial homogeneity of pore surface chemistry in particulate activated carbon. Carbon 95:144–9. doi:10.1016/j.carbon.2015.08.019
  • Sevilla, M., Maciá-Agulló, J.A., Fuertes, A.B. 2011. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenergy 35(7):3152–9. doi:10.1016/j.biombioe.2011.04.032
  • Sung, Y.J., and Y.B. Seo. 2009. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim. Acta 486(1–2):1–4. doi:10.1016/j.tca.2008.12.010
  • Torrellas, S.Á., R. García-Lovera, N. Escalona, C. Sepúlveda, J.L. Sotelo, and J. García. 2015. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem. Eng. J. 279:788–98. doi:10.1016/j.cej.2015.05.104
  • Uçar, S., M. Erdem, T. Tay, and S. Karagöz. 2009. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl. Surf. Sci. 255(21):8890–6. doi:10.1016/j.apsusc.2009.06.080
  • Wang, L., H. Zhang, G. Cao, W. Zhang, H. Zhao, and Y. Yang. 2015. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries. Electrochim. Acta 186:654–63. doi:10.1016/j.electacta.2015.11.007
  • Wang, Z.M., H. Kanoh, K. Kaneko, G. Lu, and D. Do. 2002. Structural and surface property changes of macadamia nut-shell char upon activation and high temperature treatment. Carbon 40(8):1231–9. doi:10.1016/S0008-6223(01)00286-X
  • Yang, J., and K. Qiu. 2011. Development of high surface area mesoporous activated carbons from herb residues. Chem. Eng. J. 167(1):148–54. doi:10.1016/j.cej.2010.12.013
  • Yao, X., L. Li, H. Li, and S. He. 2014. A new method for preparing hydrophilic-activated carbon through ester hydrolysis in an alkaline environment. J. Mater. Sci. 49(14):4807–15. doi:10.1007/s10853-014-8180-9
  • Zhang, J., Z. Zhong, D. Shen, J. Zhao, H. Zhang, M. Yang, and W. Li. 2011. Preparation of bamboo-based activated carbon and it’s application in direct carbon fuel cells. Energy Fuels 25(5):2187–93. doi:10.1021/ef200161c
  • Zhou, J.H., Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, and W.K. Yuan. 2007. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45(4):785–96. doi: 10.1016/j.carbon.2006.11.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.