898
Views
2
CrossRef citations to date
0
Altmetric
Notebook Paper

Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption

, , , , &
Pages 1139-1147 | Received 05 Jan 2018, Accepted 08 May 2018, Published online: 28 Jun 2018

References

  • Allen, D.T., A.P. Pacsi, D.W. Sullivan, D. Zavala-Araiza, M. Harrison, K. Keen, M.P. Fraser, A. Daniel Hill, R.F. Sawyer, and J.H. Seinfeld. 2014a. Methane emissions from process equipment at natural gas production sites in the United States: Pneumatic controllers. Environ. Sci. Technol. 49 (1):633–640. doi:10.1021/es5040156.
  • Allen, D.T., D.W. Sullivan, D. Zavala-Araiza, A.P. Pacsi, M. Harrison, K. Keen, M.P. Fraser, A. Daniel Hill, B.K. Lamb, R.F. Sawyer, and J.H. Seinfeld. 2014b. Methane emissions from process equipment at natural gas production sites in the United States: Liquid unloadings. Environ. Sci. Technol. 49 (1):641–648. doi:10.1021/es504016r.
  • Alvarez, R.A., D.R. Lyon, A.J. Marchese, A.L. Robinson, and S. P. Hamburg. 2016. Possible malfunction in widely used methane sampler deserves attention but poses limited implications for supply chain emission estimates. Elem. Sci. Anth. 4:000137. doi:10.12952/journal.elementa.000137.
  • Alvarez, R.N.A., S.W. Pacala, J.J. Winebrake, W.L. Chameides, and S.P. Hamburg. 2012. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. 109 (17):6435–6440. doi:10.1073/pnas.1202407109.
  • Argonne National Laboratory. 2014. The greenhouse gases, regulated emissions, and energy use in transportation model. https://greet.es.anl.gov (accessed June 6, 2018).
  • Bauen, A., and D. Hart. 2000. Assessment of the environmental benefits of transport and stationary fuel cells. J. Power Sources 86 (1):482–494. doi:10.1016/S0378-7753(99)00445-0.
  • Brandt, A., G. Heath, E.A. Kort, F. O’Sullivan, G. Petron, S.M. Jordaan, P. Tans, J. Wilcox, A.M. Gopstein, D. Arent, S. Wofsy, N.J. Brown, R. Bradley, G.D. Stucky, D. Eardley, and R. Harriss. 2014. Methane leaks from North American natural gas systems. Science 343 (6172):733–735. doi:10.1126/science.1247045.
  • Brantley, H.L., E.D. Thoma, W.C. Squier, B.B. Guven, and D. Lyon. 2014. Assessment of methane emissions from oil and gas production pads using mobile measurements. Environ. Sci. Technol. 48 (24):14508–14515. doi:10.1021/es503070q.
  • California Air Resources Board. 2015. California Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation. Version 2.0. (CA-GREET 2.0). http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm (accessed June 6, 2018).
  • Camuzeaux, J.R., R.N.A. Alvarez, S.A. Brooks, J.B. Browne, and T. Sterner. 2015. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks. Environ. Sci. Technol. 49 (11):6402–6410. doi:10.1021/acs.est.5b00412.
  • Cullen, J. 2010b. Measuring the environmental benefits of wind generated electricity. Working Paper, Cambridge, Massachusetts: Harvard University.
  • Darrow, K., R. Tidball, et al. 2015. Catalog of CHP technologies. http://www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf (accessed January 12, 2015).
  • De Bruijn, F. 2005. The current status of fuel cell technology for mobile and stationary applications. Green Chem. 7 (3):132–150. doi:10.1039/b415317k.
  • Denholm, P., and W. Short. 2006. An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles. NREL/TP-620-40293. National Renewable Energy Laboratory, Golden, CO.
  • Dominguez-Faus, R. 2016. The Carbon Intensity of NGV C8 Trucks. Working Paper. UCD-ITS-WP-15-01. Institute of Transportation Studies University of California, Davis.
  • Hawkes, A. 2010. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy 38 (10):5977–5987. doi:10.1016/j.enpol.2010.05.053.
  • Innovative Environmental Solutions. 2009. Field measurement program to improve uncertainties for key greenhouse gas emissions factors for distribution sources. Des Plaines, IL: Gas Technology Institute. https://www.otd-co.org/reports/Documents/77b_OTD-10-0002_GHG_Emission_Factors_FinalReport_v2.pdf (accessed July 1, 2016).
  • Kaffine, D.T., B.J. McBee, et al. 2011. Emissions savings from wind power generation: Evidence from Texas, California, and the Upper Midwest. Working paper, Division of Economics and Business, Colorado School of Mines.
  • Karion, A., C. Sweeney, G. Pétron, G. Frost, R. Michael Hardesty, J. Kofler, B.R. Miller, T. Newberger, S. Wolter, R. Banta, A. Brewer, E. Dlugokencky, P. Lang, S.A. Montzka, R. Schnell, P. Tans, M. Trainer, R. Zamora, and S. Conley. 2013. Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett. 40 (16):4393–4397. doi:10.1002/grl.50811.
  • Lamb, B.K., S.L. Edburg, T.W. Ferrara, T. Howard, M.R. Harrison, C.E. Kolb, A. Townsend-Small, W. Dyck, A. Possolo, and J.R. Whetstone. 2015. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. Environ. Sci. Technol. 49 (8):5161–5169. doi:10.1021/es505116p.
  • Lavoie, T.N., P.B. Shepson, M.O.L. Cambaliza, B.H. Stirm, A. Karion, C. Sweeney, T.I. Yacovitch, S.C. Herndon, X. Lan, and D. Lyon. 2015. Aircraft-based measurements of point source methane emissions in the Barnett Shale basin. Environ. Sci. Technol. 49 (13):7904–7913. doi:10.1021/acs.est.5b00410.
  • Marchese, A.J., T.L. Vaughn, D.J. Zimmerle, D.M. Martinez, L.L. Williams, A.L. Robinson, A.L. Mitchell, R. Subramanian, D.S. Tkacik, J.R. Roscioli, and S.C. Herndon. 2015. Methane emissions from United States natural gas gathering and processing. Environ. Sci. Technol. 49 (17):10718–10727. doi:10.1021/acs.est.5b02275.
  • McCarthy, R., and C. Yang. 2010. Determining marginal electricity for near-term plug-in and fuel cell vehicle demands in California: Impacts on vehicle greenhouse gas emissions. J. Power Sources 195 (7):2099–2109. doi:10.1016/j.jpowsour.2009.10.024.
  • Miller, S.M., S.C. Wofsy, A.M. Michalak, E.A. Kort, A.E. Andrews, S.C. Biraud, E.J. Dlugokencky, J. Eluszkiewicz, M.L. Fischer, G. Janssens-Maenhout, B.R. Miller, J.B. Miller, S.A. Montzka, T. Nehrkorn, and C. Sweeney. 2013. Anthropogenic emissions of methane in the United States. Proc. Natl. Acad. Sci. 110 (50):20018–20022. doi:10.1073/pnas.1314392110.
  • Mitchell, A.L., D.S. Tkacik, J.R. Roscioli, S.C. Herndon, T.I. Yacovitch, D.M. Martinez, T.L. Vaughn, L.L. Williams, M.R. Sullivan, C. Floerchinger, M. Omara, R. Subramanian, D. Zimmerle, A.J. Marchese, and A.L. Robinson. 2015. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement results. Environ. Sci. Technol. 49 (5):3219–3227. doi:10.1021/es5052809.
  • Mullins, K.A., W.M. Griffin, and H.S. Matthews. 2010. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. Environ. Sci. Technol. 45 (1):132–138. doi:10.1021/es1024993.
  • Newell, R.G., and D. Raimi. 2014. Implications of shale gas development for climate change. Environ. Sci. Technol. 48 (15): 8360–8368
  • Nunez, F. 2006. California assembly bill 32, California global warming solutions act, Sacramento, CA: California Legislature.
  • Omara, M., M.R. Sullivan, X. Li, R. Subramanian, A.L. Robinson, and A.A. Presto. 2016. Methane emissions from conventional and unconventional natural gas production sites in the Marcellus Shale Basin. Environ. Sci. Technol. 50 (4):2099–2107. doi:10.1021/acs.est.5b05503.
  • Razeghi, G., T. Brown, and G.S. Samuelsen. 2011. The impact of plug-in vehicles on greenhouse gas and criteria pollutants emissions in an urban air shed using a spatially and temporally resolved dispatch model. J. Power Sources 196 (23):10387–10394. doi:10.1016/j.jpowsour.2011.08.043.
  • Shaffer, B., B. Tarroja, and S. Samuelsen. 2015. Dispatch of fuel cells as Transmission Integrated Grid Energy Resources to support renewables and reduce emissions. Appl. Energy 148:178–186. doi:10.1016/j.apenergy.2015.03.018.
  • Siler-Evans, K., I.L. Azevedo, and M.G. Morgan. 2012. Marginal emissions factors for the US electricity system. Environ. Sci. Technol. 46 (9):4742–4748. doi:10.1021/es300145v.
  • Simpson, D. 2014. Pneumatic controllers in upstream oil and gas. Oil Gas Facil. 3 (05):83–96. doi:10.2118/172505-PA.
  • Tong, F., P. Jaramillo, and I.M.L. Azevedo. 2015a. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles. Environ. Sci. Technol. 49 (12):7123–7133. doi:10.1021/es5052759.
  • Tong, F., P. Jaramillo, and I.M.L. Azevedo. 2015b. Comparison of life cycle greenhouse gases from natural gas pathways for light-duty vehicles. Energy Fuels 29 (9):6008–6018. doi:10.1021/acs.energyfuels.5b01063.
  • U.S. EPA. 2016. Annex 3.6: Methodology for estimating CH4 and CO2 emissions from natural gas systems. Annexes to the Inventory of U.S. GHG Emissions and Sinks., United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2017-02/documents/3._6_natural_gas_systems_annex_2017-2-10_.pdf (accessed June 6, 2018).
  • Venkatesh, A., P. Jaramillo, W.M. Griffin, and H.S. Matthews. 2010. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies. Environ. Sci. Technol. 45 (1):125–131. doi:10.1021/es102498a.
  • Venkatesh, A., P. Jaramillo, W.M. Griffin, and H.S. Matthews. 2011. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. Environ. Sci. Technol. 45 (19):8182–8189. doi:10.1021/es200930h.
  • von Fischer, J.C., D. Cooley, S. Chamberlain, A. Gaylord, C.J. Griebenow, S.P. Hamburg, J. Salo, R. Schumacher, D. Theobald, and J. Ham. 2017. Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. Environ. Sci. Technol. 51 (7):4091–4099. doi:10.1021/acs.est.6b06095.
  • Weber, C.L., and C. Clavin. 2012. Life cycle carbon footprint of shale gas: Review of evidence and implications. Environ. Sci. Technol. 46 (11):5688–5695. doi:10.1021/es300375n.
  • Zavala-Araiza, D., D. Lyon, R.A. Alvarez, V. Palacios, R. Harriss, X. Lan, R. Talbot, and S.P. Hamburg. 2015a. Toward a functional definition of methane super-emitters: Application to natural gas production sites. Environ. Sci. Technol. 49 (13):8167–8174. doi:10.1021/acs.est.5b00133.
  • Zavala-Araiza, D., D.R. Lyon, R.A. Alvarez, K.J. Davis, R. Harriss, S.C. Herndon, A. Karion, E.A. Kort, B.K. Lamb, X. Lan, et al. 2015b. Reconciling divergent estimates of oil and gas methane emissions. Proc. Natl. Acad. Sci. 112 (51):15597–15602.
  • Zivin, J.S.G., M.J. Kotchen, and E.T. Mansur. 2014. Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies. J. Econ. Behav. Organ. 107:248–268. doi:10.1016/j.jebo.2014.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.