2,334
Views
25
CrossRef citations to date
0
Altmetric
Technical Paper

Preparation and reactivation of magnetic biochar by molten salt method: Relevant performance for chlorine-containing pesticides abatement

, , , &
Pages 58-70 | Received 06 May 2018, Accepted 07 Aug 2018, Published online: 15 Nov 2018

References

  • Baig, S. A., J. Zhu, N. Muhammad, T. Sheng, and X. Xu. 2014. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass Bioenergy 71:299–310. doi:10.1016/j.biombioe.2014.09.027.
  • Cao, Q., Z. Liu, and R. Che. 2014. Ordered mesoporous CoFe2O4 nanoparticles: Molten-salt-assisted rapid nanocasting synthesis and the effects of calcining heating rate. New J. Chem. 38 (7):3193–3198. doi:10.1039/c4nj00235k.
  • Cho, D.-W., J. Lee, Y. S. Ok, E. E. Kwon, and H. Song. 2016. Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar. Chemosphere 163:305–312. doi:10.1016/j.chemosphere.2016.08.025.
  • Flandinet, L., F. Tedjar, V. Ghetta, and J. Fouletier. 2012. Metals recovering from waste printed circuit boards (WPCBs) using molten salts. J. Hazard. Mater. 213–214:485–490. doi:10.1016/j.jhazmat.2012.02.037.
  • Frangini, S., and A. Masi. 2016. Molten carbonates for advanced and sustainable energy applications: Part I. Revisiting molten carbonate properties from a sustainable viewpoint. Int. J. Hydrogen Energy 41 (41):18739–18746. doi:10.1016/j.ijhydene.2015.12.073.
  • Hao, X., J. Wang, B. Ding, L. Shen, Y. Xu, Y. Wang, Z. Chang, H. Dou, X. Lu, and X. Zhang. 2016. Heteroatom Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chem. 22(46):16668–16674. doi:10.1002/chem.201602922.
  • Ji, G., X. Lin, Y. Sun, S. A. A. Trimizi, H. Su, and Y. Du. 2011. Molten salt growth and magnetic properties of octahedral CoFe2O4 crystals: Effects of synthesis conditions. Cryst. Eng. Comm. 13 (21):6451–6456. doi:10.1039/c1ce05459g.
  • Jung, K.-W., B. H. Choi, T.-U. Jeong, and K.-H. Ahn. 2016. Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media. Bioresour. Technol. 220:672–676. doi:10.1016/j.biortech.2016.09.035.
  • Kalinke, C., A. S. Mangrich, L. H. Marcolino-Junior, and M. F. Bergamini. 2016. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J. Hazard. Mater. 318:526–532. doi:10.1016/j.jhazmat.2016.07.041.
  • Kong, W. X., F. Zhao, H. J. Guan, Y. F. Zhao, H. S. Zhang, and B. Zhang. 2016. Highly adsorptive mesoporous carbon from biomass using molten-salt route. J. Mater. Sci. 51 (14):6793–6800. doi:10.1007/s10853-016-9966-8.
  • Kovarik, P., J. D. Navratil, and J. John. 2015. Scientific and Engineering Literature Mini Review of Molten Salt Oxidation for Radioactive Waste Treatment and Organic Compound Gasification as well as Spent Salt Treatment. Sci. Technol. Nucl. Installations 2015:1-10. doi:10.1155/2015/407842.
  • Li, J.-H., X.-F. Sun, Z.-T. Yao, and X.-Y. Zhao. 2014. Remediation of 1, 2, 3-trichlorobenzene contaminated soil using a combined thermal desorption–Molten salt oxidation reactor system. Chemosphere 97:125–129. doi:10.1016/j.chemosphere.2013.10.047.
  • Li, R., J. J. Wang, B. Zhou, Z. Zhang, S. Liu, S. Lei, and R. Xiao. 2017. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J. Clean. Prod. 147:96–107. doi:10.1016/j.jclepro.2017.01.069.
  • Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Skjemstad, J. Thies, F. J. Luizão, and J. Petersen. 2006. Black carbon increases cation exchange capacity in soil. Soil Sci. Soc. America J. 70 (5):1719–1730. doi:10.2136/sssaj2005.0383.
  • Liu, G., W.-J. Sun, S.-S. Tang, S.-Q. Liang, and J. Liu. 2015. Synthesis of alpha-Fe2O3@SnO2 core-shell nanoparticles via low-temperature molten salt reaction route. Transactions of Nonferrous Metals Society of China 25 (11):3651–3656. doi:10.1016/S1003-6326(15)64076-6.
  • Liu, -T.-T., M.-H. Wang, H.-P. Zhang, and Y.-Z. Zhao. 2016a. Molten salt synthesis of doped nanocrystalline ZnO powders and applications in varistor ceramics. J. Mater. Science-Materials S 27 (4):3704–3709. doi:10.1007/s10854-015-4211-9.
  • Liu, W. J., K. Tian, H. Jiang, and H. Q. Yu. 2013. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci. Rep. 3 (33):2419. doi:10.1038/srep02419.
  • Liu, X., and M. Antonietti. 2014. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon N. Y. 69:460–466. doi:10.1016/j.carbon.2013.12.049.
  • Liu, X., J. Li, and H. Du. 2016b. Preparation and characterization of Zn 2 TiO 4 micro/nano crystals by molten salt method. J. Mater. Sci. Mater. s 27 (12):1–5. doi:10.1007/s10854-016-5474-5.
  • Lobos, M. L. N., J. M. Sieben, V. Comignani, M. Duarte, M. A. Volpe, and E. L. Moyano. 2016. Biochar from pyrolysis of cellulose: An alternative catalyst support for the electro-oxidation of methanol. Int. J. Hydrogen Energy 41 (25):10695–10706. doi:10.1016/j.ijhydene.2016.04.041.
  • Lu, B., Z. Xiao, H. Zhu, W. Xiao, W. Wu, and D. Wang. 2015. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. J. Power. Sources 298:74–82. doi:10.1016/j.jpowsour.2015.08.047.
  • Lu, B. H., L. Y. Hu, H. Y. Yin, X. H. Mao, W. Xiao, and D. H. Wang. 2016a. Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. Int. J. Hydrogen Energy 41 (41):18713–18720. doi:10.1016/j.ijhydene.2016.05.083.
  • Lu, B. H., L. Y. Hu, H. Y. Yin, W. Xiao, and D. H. Wang. 2016b. One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Adv 6 (108):106485–106490. doi:10.1039/C6RA22191B.
  • Lu, B. H., J. Zhou, Y. Q. Song, H. L. Wang, W. Xiao, and D. H. Wang. 2016c. Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction. Faraday Discuss. 190:147–159. doi:10.1039/C5FD00215J.
  • Marques, S. C. R., J. M. Marcuzzo, M. R. Baldan, A. S. Mestre, and A. P. Carvalho. 2017. Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chem. Eng. J. 321:233–244. doi:10.1016/j.cej.2017.03.101.
  • Nagodavithane, C. L., B. Singh, and Y. Fang. 2014. Effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar. Soil Res. 52 (2):155–163. doi:10.1071/SR13187.
  • Oh, S. Y., and Y. D. Seo. 2016. Sorption of halogenated phenols and pharmaceuticals to biochar: Affecting factors and mechanisms. Environ. Sci. Pollut. Res. 23 (2):1–11. doi:10.1007/s11356-015-5714-x.
  • Özhan, A., Ö. Şahin, M. M. Küçük, and C. Saka. 2014. Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose 21 (4):2457–2467. doi:10.1007/s10570-014-0299-y.
  • Peng, B., L. Chen, C. Que, K. Yang, F. Deng, X. Deng, G. Shi, G. Xu, and M. Wu. 2016. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci. Rep. 6 (6):31920. doi:10.1038/srep31920.
  • Raade, J. W., and D. Padowitz. 2011. Development of molten salt heat transfer fluid with low melting point and high thermal stability. J. Solar Energy Eng. 133 (3):031013. doi:10.1115/1.4004243.
  • Reddy, M. V., S. Adams, G. T. J. Liang, I. F. Mingze, T. A. Huynh Van, and B. V. R. Chowdari. 2014a. Low temperature molten salt synthesis of anatase TiO2 and its electrochemical properties. Solid State Ionics 262:120–123. doi:10.1016/j.ssi.2013.11.030.
  • Reddy, M. V., C. T. Cherian, K. Ramanathan, K. C. W. Jie, T. Y. W. Daryl, T. Y. Hao, S. Adams, K. P. Loh, and B. V. R. Chowdari. 2014b. Molten synthesis of ZnO.Fe 3 O 4 and Fe 2 O 3 and its electrochemical performance. Electrochim. Acta 118:75–80. doi:10.1016/j.electacta.2013.11.125.
  • Reddy, M. V., V. H. Khai, and B. V. R. Chowdari. 2015a. Facile one pot molten salt synthesis of nano (M 1/2 Sb 1/2 Sn)O 4 (M=V, Fe, In). Mater. Lett. 140:115–118. doi:10.1016/j.matlet.2014.10.145.
  • Reddy, M. V., G. V. S. Rao, and B. V. R. Chowdari. 2013. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 113 (7):5364–5457. doi:10.1021/cr3001884.
  • Reddy, M. V., L. Y. Tse, K. Z. B. Wen, and B. V. R. Chowdari. 2015b. Low temperature molten salt preparation of nano-SnO2 as anode for lithium-ion batteries. Mater. Lett. 138:231–234. doi:10.1016/j.matlet.2014.09.108.
  • Reguyal, F., A. K. Sarmah, and W. Gao. 2016. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J. Hazard. Mater. 321::868–878. doi:10.1016/j.jhazmat.2016.10.006.
  • Saravanan, P., V. T. P. Vinod, B. Sreedhar, and R. B. Sashidhar. 2012. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater. Sci. Eng. C 32 (3):581–586. doi:10.1016/j.msec.2011.12.015.
  • Selvamani, S., S. Balamurugan, and S. V. Sreenija. 2016. Facile Synthesis of Nanocrystalline CuFe2O4 Materials by Molten Salt Flux Method. In Dae Solid State Physics Symposium 2015, eds. R. Chitra, S. Bhattacharya, and N. K. Sahoo, Vol. 1731, 597–603. Melville, NY: AIP Publishing LLC.
  • Shan, D., S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, G. Yu, J. Winglee, and M. R. Wiesner. 2016. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 305:156–163. doi:10.1016/j.jhazmat.2015.11.047.
  • Shang, C., G. Ji, W. Liu, X. Zhang, H. Lv, and Y. Du. 2015a. One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application. RSC Adv 5 (98):80450–80456. doi:10.1039/C5RA15949K.
  • Shang, H. S., Y. J. Lu, F. Zhao, C. Chao, B. Zhang, and H. S. Zhang. 2015b. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Adv 5 (92):75728–75734. doi:10.1039/C5RA12406A.
  • Thines, K. R., E. C. Abdullah, N. M. Mubarak, and M. Ruthiraan. 2017. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renewable Sustainable Energy Reviews 67:257–276. doi:10.1016/j.rser.2016.09.057.
  • Upadhye, R. S., C. O. Pruneda, and B. E. Watkins 1997. Recent advances in the molten salt technology for the destruction of energetic materials. Proceedings of the 1997 Air & Waste Management Association’s 90th Annual Meeting & Exhibition, June 8, 1997 - June 13, 1997, Toronto, Can. Air & Waste Management Assoc.
  • Wang, L., X. Jiang, and Y. Liu. 2008. Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions. J. Hazard. Mater 154 (1–3):1106–1114. doi:10.1016/j.jhazmat.2007.11.016.
  • Wang, W., L. Liu, Y. Ma, and W. Wang. 2014. Synthesis and optical property of plate-like ZnO nanocrystals prepared by a NaCl molten salt method. New Chem. Mater. 42 (6):135–137.
  • Wei, D., H. H. Ngo, W. Guo, W. Xu, Y. Zhang, B. Du, and Q. Wei. 2016. Biosorption of effluent organic matter onto magnetic biochar composite: Behavior of fluorescent components and their binding properties. Bioresour. Technol. 214:259–265. doi:10.1016/j.biortech.2016.04.109.
  • Xia, G., N. Li, D. Li, R. Liu, N. Xiao, and D. Tian. 2011. Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries. Mater. Lett. 65(23–24):3377–3379. doi:10.1016/j.matlet.2011.07.008.
  • Yang, F., L. Sun, W. Zhang, and Y. Zhang. 2017. One-pot synthesis of porous carbon foam derived from corn straw: Atrazine adsorption equilibrium and kinetics. Environ. Sci. Nano 4(3):625–635. doi:10.1039/C6EN00574H.
  • Yang, J., Y. Zhao, S. Ma, B. Zhu, J. Y. Zhang, and C. Zheng. 2016. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ. Sci. Technol. 50(21):12040–12047. doi:10.1021/acs.est.6b03743.
  • Yao, Z., J. Li, and X. Zhao. 2011. Molten salt oxidation: A versatile and promising technology for the destruction of organic-containing wastes. Chemosphere 84 (9):1167–1174. doi:10.1016/j.chemosphere.2011.05.061.
  • Yao, Z.-T., J.-H. Li, and X.-Y. Zhao. 2013. Destruction of decabromodiphenyl ether (BDE-209) in a ternary carbonate molten salt reactor. J. Environ. Manage. 127:244–248. doi:10.1016/j.jenvman.2013.04.040.
  • Yin, H., B. Lu, Y. Xu, D. Tang, X. Mao, W. Xiao, D. Wang, and A. N. Alshawabkeh. 2014. Harvesting Capacitive Carbon by Carbonization of Waste Biomass in Molten Salts. Environ. Sci. Technol. 48 (14):8101–8108. doi:10.1021/es501739v.
  • Yu, J. X., L. Y. Wang, R. A. Chi, Y. F. Zhang, Z. G. Xu, and J. Guo. 2013. Competitive adsorption of Pb 2+ and Cd 2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl. Surf. Sci. 268 (268):163–170. doi:10.1016/j.apsusc.2012.12.047.
  • Zhang, Q. Z., X. H. Wang, Z. L. Du, X. R. Liu, and Y. D. Wang. 2013. Impact of biochar on nitrate accumulation in an alkaline soil. Soil Res. 51 (6):521–528. doi:10.1071/SR13153.
  • Zhao, H., S. Yang, H. You, Y. Wu, and B. Ding. 2012. Synthesis of surfactant-free Pt concave nanoparticles in a freshly-made or recycled molten salt. Green Chem. 14 (11):3197–3203. doi:10.1039/c2gc35995b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.