4,108
Views
30
CrossRef citations to date
0
Altmetric
Technical Paper

Aerially guided leak detection and repair: A pilot field study for evaluating the potential of methane emission detection and cost-effectiveness

, , , , , , , , , , & show all
Pages 71-88 | Received 03 May 2018, Accepted 20 Aug 2018, Published online: 19 Oct 2018

References

  • Allen, D. T., A. P. Pacsi, D. W. Sullivan, D. Zavala-Araiza, M. Harrison, K. Keen, M. P. Fraser, A. Daniel Hill, R. F. Sawyer, and J. H. Seinfeld. 2015. Methane emissions from process equipment at natural gas production sites in the United States: Pneumatic controllers. Environ. Sci. Technol. 49 (1):633–640. doi:10.1021/es5040156.
  • Anifowose, B., and M. Odubela. 2015. Methane emissions from oil and gas transport facilities - exploring innovative ways to mitigate environmental consequences. J. Clean. Prod. 92:121–133. doi:10.1016/j.jclepro.2014.12.066.
  • Arkansas Oil and Gas Commission. 2016. Fayetteville Shale Gas Sales Information. http://aogc2.state.ar.us/Fayshale/Default.aspx.
  • Brandt, A. R., G. A. Heath, and D. Cooley. 2016. Methane leaks from natural gas systems follow extreme distributions. Environ. Sci. Technol. 50(22):12512–12520. American Chemical Society. doi:10.1021/acs.est.6b04303.
  • Brantley, H. L., E. D. Thoma, W. C. Squier, B. B. Guven, and D. Lyon. 2014. Assessment of methane emissions from oil and gas production pads using mobile measurements. Environ. Sci. Technol. 48 (24):14508–14515. American Chemical Society. doi:10.1021/es503070q.
  • Conley, S., I. Faloona, S. Mehrotra, M. Suard, D. H. Lenschow, C. Sweeney, S. Herndon, S. Schwietzke, G. Pétron, J. Pifer, E. A. Kort, and R. Schnell. 2017. Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases. Atmos. Meas. Tech. 10 (9):1–29. doi:10.5194/amt-10-3345-2017.
  • Crosson, E. R. 2008. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B Lasers Opt. 92:403–408. doi:10.1007/s00340-008-3135-y.
  • EIA. 2017a. U.S. Energy information administration. www.eia.gov.
  • EIA. 2017b. United States expected to become a net exporter of natural gas this year. Https://Www.Eia.Gov/Todayinenergy/Detail.Php?Id=32412&src=email.
  • EPA. 2016a. EPA releases first-ever standards to cut methane emissions from the oil and gas sector. https://www.epa.gov/newsreleases/epa-releases-first-ever-standards-cut-methane-emissions-oil-and-gas-sector.
  • EPA. 2016b. Background technical support document for the proposed new source performance standards 40 CFR part 60, Subpart OOOOa. Https://Www.Regulations.Gov/Document?D=EPA-HQ-OAR-2002-0037-0180.
  • EPA. 2016c. 40 CFR part 60, oil and natural gas sector: Emission standards for new, reconstructed, and modified sources, Final Rule, Federal Register Volume 81, No. 107, June 3, 2016.
  • EPA Office of Inspector General. 2018. EPA did not use allegedly flawed studies to estimate methane emissions or set new source performance standards for oil and natural gas production. Https://Www.Epa.Gov/Sites/Production/Files/2018-03/Documents/_epaoig_20180316-18-p-0129.Pdf.
  • Frankenberg, C., A. K. Thorpe, D. R. Thompson, G. Hulley, E. A. Kort, N. Vance, J. Borchardt, T. Krings, K. Gerilowski, C. Sweeney, S. Conley, B. D. Bue, A. D. Aubrey, S. Hook, and R. O. Green. 2016. Airborne methane remote measurements reveal heavy-tail flux distribution in four corners region. Proc. Natl. Acad. Sci. 113:9734–9739. doi:10.1073/pnas.1605617113.
  • George, F. C. 2018. Rising to the methane challenge – a synopsis of the evolution of corporate and national methane policy. Proceedings of the 27th World Gas Conference, Washington, DC. Submitted.
  • Howard, T., T. W. Ferrara, and A. Townsend-Small. 2015. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure. J. Air Waste Manag. Assoc. 65:856–862. doi:10.1080/10962247.2015.1025925.
  • ICF International. 2016. Economic analysis of methane emission reduction potential from natural gas systems. Http://Www.Onefuture.Us/Wp-Content/Uploads/2016/06/ONE-Future-MAC-Final-6-1.Pdf.
  • Johnson, M. R., D. R. Tyner, S. Conley, S. Schwietzke, and D. Zavala-Araiza. 2017. Comparisons of airborne measurements and inventory estimates of methane emissions in the alberta upstream oil and gas sector. Environ. Sci. Technol. 51 (21):13008–13017. doi:10.1021/acs.est.7b03525.
  • Karion, A., C. Sweeney, E. A. Kort, P. B. Shepson, A. Brewer, M. Cambaliza, S. A. Conley, K. Davis, A. Deng, M. Hardesty, S. C. Herndon, T. Lauvaux, T. Lavoie, D. Lyon, T. Newberger, G. Pétron, C. Rella, M. Smith, S. Wolter, T. I. Yacovitch, and P. Tans. 2015. Aircraft-based estimate of total methane emissions from the barnett shale region. Environ. Sci. Technol. 49 (13):8124–8131. American Chemical Society. doi:10.1021/acs.est.5b00217.
  • Kemp, C. E., A. P. Ravikumar, and A. R. Brandt. 2016. Comparing natural gas leakage detection technologies using an open-source “virtual gas field” simulator. Environ. Sci. Technol. 50 (8):4546–4553. doi:10.1021/acs.est.5b06068.
  • Lamb, B. K., S. L. Edburg, T. W. Ferrara, T. Howard, M. R. Harrison, C. E. Kolb, A. Townsend-Small, W. Dyck, A. Possolo, and J. R. Whetstone. 2015. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. Environ. Sci. Technol. 49(8):5161–5169. American Chemical Society. doi:10.1021/es505116p.
  • Lyon, D. R., R. A. Alvarez, D. Zavala-Araiza, A. R. Brandt, R. B. Jackson, and S. P. Hamburg. 2016. Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites. Environ. Sci. Technol. 50 (9):4877–4886. American Chemical Society. doi:10.1021/acs.est.6b00705.
  • Mitchell, A. L., D. S. Tkacik, J. R. Roscioli, S. C. Herndon, T. I. Yacovitch, D. M. Martinez, T. L. Vaughn, L. L. Williams, M. R. Sullivan, C. Floerchinger, M. Omara, R. Subramanian, D. Zimmerle, A. J. Marchese, and A. L. Robinson. 2015. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement results. Environ. Sci. Technol. 49(5):3219–3227. American Chemical Society. doi:10.1021/es5052809.
  • National Academies of Sciences Engineering and Medicine. 2018. Improving characterization of anthropogenic methane emissions in the United States. Washington, DC: The National Academies Press. doi:10.17226/24987.
  • Papailias, G., and I. Mavroidis. 2018. Atmospheric emissions from oil and gas extraction and production in Greece. Atmosphere (Basel). 9(4):152. Multidisciplinary Digital Publishing Institute. doi:10.3390/atmos9040152.
  • Ravikumar, A. P., and A. R. Brandt. 2017. Designing better methane mitigation policies: The challenge of distributed small sources in the natural gas sector. Environ. Res. Lett. 12 (4):44023. http://stacks.iop.org/1748-9326/12/i=4/a=044023.
  • Saunois, M., P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, C. Curry, C. Frankenberg, N. Gedney, L. Höglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.-S. Kim, T. Kleinen, P. Krummel, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, S. O'Doherty, F.-J. W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. Van Weele, G. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. B. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang, and Q. Zhu. 2016. The global methane budget: 2000–2012. Earth Syst. Sci. Data Discuss. 1–79. Copernicus GmbH. June. doi:10.5194/essd-2016-25.
  • Schwietzke, S., G. Pétron, S. Conley, C. Pickering, I. Mielke-Maday, E. J. Dlugokencky, P. P. Tans, T. Vaughn, C. Bell, D. Zimmerle, S. Wolter, C. W. King, A. B. White, T. Coleman, L. Bianco, and R. C. Schnell. 2017. Improved mechanistic understanding of natural gas methane emissions from spatially resolved aircraft measurements. Environ. Sci. Technol. 51(12):7286–7294. American Chemical Society. doi:10.1021/acs.est.7b01810.
  • Schwietzke, S., O. A. Sherwood, L. M. P. Bruhwiler, J. B. Miller, G. Etiope, E. J. Dlugokencky, S. E. Michel, V. A. Arling, B. H. Vaughn, J. W. C. White, and P. P. Tans. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature. 538:7623. doi:10.1038/nature19797.
  • Thorpe, A. K., C. Frankenberg, A. D. Aubrey, D. A. Roberts, A. A. Nottrott, T. A. Rahn, J. A. Sauer, M. K. Dubey, K. R. Costigan, C. Arata, A. M. Steffke, S. Hills, C. Haselwimmer, D. Charlesworth, C. C. Funk, R. O. Green, S. R. Lundeen, J. W. Boardman, M. L. Eastwood, C. M. Sarture, S. H. Nolte, I. B. Mccubbin, D. R. Thompson, and J. P. McFadden. 2016. Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote Sens. Environ. 179:104–115. doi:10.1016/j.rse.2016.03.032.
  • Thorpe, A. K., C. Frankenberg, D. R. Thompson, R. M. Duren, A. D. Aubrey, B. D. Bue, R. O. Green, et al. 2017. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: Application to AVIRIS-NG. Atmos. Meas. Tech. doi:10.5194/amt-10-3833-2017.
  • Vaughn, T. L., Bell, C. S., Pickering, C. P., Schwietzke, S., Heath, G. A., Pétron, G., Zimmerle, D., Nummedal, D. in press. Temporal Variability Largely Explains Difference in Top-down and Bottom-up Estimates of Methane Emissions from a Natural Gas Production Region. Proceedings of the National Academy of Sciences of the United States of America. In Review.
  • Vaughn, T. L., C. S. Bell, T. I. Yacovitch, J. R. Roscioli, S. C. Herndon, S. Conley, S. Schwietzke, G. A. Heath, G. Pétron, and D. Zimmerle. 2017. Comparing facility-level methane emission rate estimates at natural gas gathering and boosting stations. Elem. Sci. Anth. 5:71. doi:10.1525/elementa.257.
  • Yacovitch, T. I., B. Neininger, S. C. Herndon, H. D. van der Gon, S. Jonkers, J. Hulskotte, J. R. Roscioli, and D. Zavala-Araiza. 2018. Methane emissions in the Netherlands: The groningen field. Elem. Sci. Anth. 6 (1):57. doi:10.1525/elementa.308.
  • Zavala-Araiza, D., R. A. Alvarez, D. R. Lyon, D. T. Allen, A. J. Marchese, D. J. Zimmerle, and S. P. Hamburg. 2017. Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nat. Commun. 8(January):14012. doi:10.1038/ncomms14012.