1,649
Views
4
CrossRef citations to date
0
Altmetric
Technical Paper

Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant

, , , ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 97-108 | Received 21 May 2018, Accepted 05 Sep 2018, Published online: 07 Nov 2018

References

  • Al-Naiema, I., A. D. Estillore, I. A. Mudunkotuwa, V. H. Grassian, and E. A. Stone. 2015. Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel 162 (December):111–120. doi:10.1016/j.fuel.2015.08.054.
  • Colechin, M. 2005. Best practice brochure : Co- firing of biomass (main report). no. May.
  • Frey, A. K., K. Saarnio, H. Lamberg, F. Mylläri, P. Karjalainen, K. Teinilä, S. Carbone, et al. 2014. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion. Environ. Sci. Technol. 48 (1):827–836. doi:10.1021/es4028698.
  • Hansen, P. F. B., K. H. Andersen, K. Wieck-Hansen, P. Overgaard, I. Rasmussen, F. J. Frandsen, L. A. Hansen, and K. Dam-Johansen. 1998. Co-firing straw and coal in a 150-MWe utility boiler: In situ measurements. Fuel Process. Technol. 54 (1–3):207–225. doi:10.1016/S0378-3820(97)00070-2.
  • Happonen, M., M. E. Tero Lähde, T. S. Messing, L. Martti Larmi, R. Wallenberg, A. Virtanen, and J. Keskinen. 2010. The comparison of particle oxidation and surface structure of diesel soot particles between fossil fuel and novel renewable diesel fuel. Fuel 89 (12):4008–4013. doi:10.1016/j.fuel.2010.06.006.
  • Heinzel, T., V. Siegle, H. Spliethoff, and K. R. G. Hein. 1998. Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility. Fuel Process. Technol. 54:109–125. doi:10.1016/S0378-3820(97)00063-5.
  • Jiménez, S., and J. Ballester. 2004. Formation and emission of submicron particles in pulverized olive residue (Orujillo) combustion. Aerosol Sci. Technol. 38 (7):707–723. doi:10.1080/02786820490490092.
  • Junkermann, W., and J. M. Hacker. 2015. Ultrafine particles over Eastern Australia: An airborne survey. Tellus, Ser. B 67 (1):1–18. doi:10.3402/tellusb.v67.25308.
  • Junninen, H., A. Lauri, P. Keronen, P. Aalto, V. Hiltunen, P. Hari, and M. Kulmala. 2009. Smart-SMEAR: On-line data exploration and visualization tool for SMEAR stations. Boreal Environ. Res. 14 (4):447–457.
  • Keskinen, J., V. Pietarinen, and M. Lehtimäki. 1992. Electrical low pressure impactor. J. Aerosol. Sci. 23 (4):353–360. doi:10.1016/0021-8502(92)90004-F.
  • Kuuluvainen, H., P. Karjalainen, C. J. E. Bajamundi, J. Maunula, P. Vainikka, J. Roppo, J. Keskinen, and R. Topi. 2015. Physical properties of aerosol particles measured from a bubbling fluidized bed boiler. Fuel 139:144–153. Elsevier Ltd. doi:10.1016/j.fuel.2014.08.048.
  • Levin, M., A. Gudmundsson, J. H. Pagels, M. Fierz, K. Mølhave, J. Löndahl, K. A. Jensen, and I. K. Koponen. 2015. Limitations in the use of unipolar charging for electrical mobility sizing instruments: A study of the fast mobility particle sizer. Aerosol Sci. Technol. 49 (8):556–565. doi:10.1080/02786826.2015.1052039.
  • Linak, W. P., C. Andrew Miller, W. S. Seames, and J. O. L. Wendt. 2002. On trimodal particle size distributions in fly ash from pulverized-coal combustion. Pulverized-coal combustion. 29:441–447.
  • Lonsdale, C. R., R. G. Stevens, C. A. Brock, P. A. Makar, E. M. Knipping, and J. R. Pierce. 2012. The effect of coal-fired power-plant SO2 and NOx control technologies on aerosol nucleation in the source plumes. Atmospheric Chem. Phys. 12 (23):11519–11531. doi:10.5194/acp-12-11519-2012.
  • Madanayake, B. N., S. Gan, C. Eastwick, and H. K. Ng. 2017. Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Process. Technol. 159:287–305. doi:10.1016/j.fuproc.2017.01.029.
  • Mikkanen, P., and M. Moisio. 2001. Sampling method for particle measurements of vehicle exhaust. 724:1–6. Society of Automotive Engineers Inc.
  • Mirme, A. 1994. Electric aerosol spectrometry. Ph.D. Thesis from University of Tartu.
  • Mylläri, F., E. Asmi, T. Anttila, E. Saukko, V. Vakkari, L. Pirjola, R. Hillamo, et al. 2016. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning. Atmospheric Chem. Phys. 16 (11):7485–7496. doi:10.5194/acp-16-7485-2016.
  • Mylläri, F., P. Karjalainen, R. Taipale, P. Aalto, A. Häyrinen, J. Rautiainen, L. Pirjola, R. Hillamo, J. Keskinen, and T. Rönkkö. 2017. Physical and chemical characteristics of flue-gas particles in a large pulverized fuel-fired power plant boiler during co-combustion of coal and wood pellets. Combust. Flame 176. doi:10.1016/j.combustflame.2016.10.027.
  • Nutalapati, D., R. Gupta, B. Moghtaderi, and T. F. Wall. 2007. Assessing slagging and fouling during biomass combustion: A thermodynamic approach allowing for alkali/ash reactions. Fuel Process. Technol. 88 (11–12):1044–1052. doi:10.1016/j.fuproc.2007.06.022.
  • Piotrowska, P., A. Grimm, N. Skoglund, C. Boman, M. Öhman, M. Zevenhoven, D. Boström, and M. Hupa. 2012. Fluidized-bed combustion of mixtures of rapeseed cake and bark: The resulting bed agglomeration characteristics. Energy Fuels 26 (4):2028–2037. doi:10.1021/ef300130e.
  • Pirjola, L., J. V. Niemi, S. Saarikoski, M. Aurela, J. Enroth, S. Carbone, K. Saarnio, et al. 2017. Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmos. Environ. 158:60–75. doi:10.1016/j.atmosenv.2017.03.028.
  • Pisa, I., and G. Lazaroiu. 2012. Influence of co-combustion of coal/biomass on the corrosion. Fuel Process. Technol. 104:356–364. doi:10.1016/j.fuproc.2012.06.009.
  • Rath, J., S. Kay, D. Bielunis, R. Pellage, and J. Rath. 2010. Technical publication: Co-milling and suspension co-firing of wood pellets with bituminous coal.
  • Ristimäki, J., A. Virtanen, M. Marjamäki, A. Rostedt, and J. Keskinen. 2002. On-line measurement of size distribution and effective density of submicron aerosol particles. J. Aerosol. Sci. 33 (11):1541–1557. doi:10.1016/S0021-8502(02)00106-4.
  • Saarikoski, S., H. Timonen, S. Carbone, H. Kuuluvainen, J. V. Niemi, A. Kousa, T. Rönkkö, D. Worsnop, R. Hillamo, and L. Pirjola. 2017. Investigating the chemical species in submicron particles emitted by city buses. Aerosol Sci. Technol. 51(3):317–329. Taylor & Francis. doi:10.1080/02786826.2016.1261992.
  • Saarnio, K., J. V. Anna Frey, H. T. Niemi, T. Rönkkö, P. Karjalainen, M. Vestenius, et al. 2014. Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization. J. Aerosol. Sci. 73:14–26. doi:10.1016/j.jaerosci.2014.03.004.
  • Savolainen, K. 2003. Co-firing of biomass in coal-fired utility boilers. Appl. Energy. 74:369–381. doi:10.1016/S0306-2619(02)00193-9.
  • Sevonius, C., P. Yrjäs, and M. Hupa. 2014. Defluidization of a quartz bed – laboratory experiments with potassium salts. Fuel 127 (July):161–168. doi:10.1016/j.fuel.2013.10.047.
  • Statistics Finland, Fuel Classification. 2017. Accessed November 29, 2017. http://www.stat.fi/polttoaineluokitus.
  • Stevens, R. G., and J. R. Pierce. 2013. A parameterization of sub-grid particle formation in sulfur-rich plumes for global- and regional-scale models. Atmospheric Chem. Phys. 13 (23):12117–12133. doi:10.5194/acp-13-12117-2013.
  • Stevens, R. G., J. R. Pierce, C. A. Brock, M. K. Reed, J. H. Crawford, J. S. Holloway, T. B. Ryerson, L. G. Huey, and J. B. Nowak. 2012. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: Sensitivity to background aerosol and meteorology. Atmospheric Chem. Phys. 12 (1):189–206. doi:10.5194/acp-12-189-2012.
  • Strzalka, R., D. Schneider, and U. Eicker. 2017. Current status of bioenergy technologies in Germany. Renew. Sustain. Energy Rev. 72:801–820. doi:10.1016/j.rser.2017.01.091.
  • Tolvanen, H., T. Keipi, and R. Raiko. 2016. A study on raw, torrefied, and steam-exploded wood: fine grinding, drop-tube reactor combustion tests in N2/O2 and CO2/O2 atmospheres, particle geometry analysis, and numerical kinetics modeling. Fuel 176:153–164. doi:10.1016/j.fuel.2016.02.071.
  • Vainio, E., P. Yrjäs, M. Zevenhoven, A. Brink, T. Lauren, M. Hupa, T. Kajolinna, and H. Vesala. 2013. The fate of chlorine, sulfur, and potassium during co-combustion of bark, sludge, and solid recovered fuel in an industrial scale BFB boiler. Fuel Process. Technol. 105:59–68. Elsevier B.V. doi:10.1016/j.fuproc.2011.08.021.
  • Verma, M., C. Loha, A. N. Sinha, and P. K. Chatterjee. 2017. Drying of biomass for utilising in co-firing with coal and its impact on environment – a review. Renew. Sustain. Energy Rev. 71 (May):732–741. doi:10.1016/j.rser.2016.12.101.
  • Wang, S. C., and R. C. Flagan. 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13 (2):230–240. doi:10.1080/02786829008959441.
  • Yi, H., J. Hao, L. Duan, X. Tang, P. Ning, and L. Xinghua. 2008. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a Bag-House in China. Fuel 87 (10–11):2050–2057. doi:10.1016/j.fuel.2007.10.009.
  • Ylätalo, S. I., and J. Hautanen. 1998. Electrostatic precipitator penetration function for pulverized coal combustion. Aerosol Sci. Technol. 29 (1):17–30. doi:10.1080/02786829808965547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.