1,635
Views
10
CrossRef citations to date
0
Altmetric
Technical Paper

Characterization of the incipient smoke point for steam-/air-assisted and nonassisted flares

&
Pages 119-130 | Received 25 May 2018, Accepted 14 Sep 2018, Published online: 31 Oct 2018

References

  • Aerodyne Research, Inc. 2010. APPENDIX aerodyne research mobile laboratory particulate measurements TCEQ 2010 flare study. Billerica, MA: Aerodyne Research, Inc.
  • Allen, D. T., and V. M. Torres. 2011a. TCEQ 2010 flare study final report. Austin, Texas: University of Texas at Austin.
  • Allen, D. T., and V. M. Torres. 2011b. 2010 flare study final appendices. https://www.tceq.texas.gov/assets/public/implementation/air/rules/Flare/2010flarestudy/2010-flare-study-final-appendices.pdf.
  • Beer’s Law. 2017. Accessed January 12, 2018. http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/beers1.htm.
  • Bubbico, R., G. Dusserre, and B. Mazzarotta. 2016. Calculation of the flame size from burning liquid pools. Chem. Eng. Trans. 53:67–72. doi:10.3303/CET1653012.
  • Cade, R., and S. Evans. 2010. Performance test of a steam-assisted elevated flare with passive FTIR. Chicago, Illinois: Clean Air Engineering.
  • Castiñeira, D., and T. F. Edgar. 2006. CFD for simulation of steam-assisted and air-assisted flare combustion systems. Energy Fuels 20 (3):1044–1056. doi:10.1021/ef050332v.
  • Chou, C. C. K., W. N. Chen, S. Y. Chang, and T. K. Chen. 2005. Specific absorption cross-section and elemental carbon content of urban aerosols. Geophys. Res. Lett. 32 (21):1–4. doi:10.1029/2005GL024301.
  • Coderre, A. R., K. A. Thomson, D. R. Snelling, and M. R. Johnson. 2011. Spectrally resolved light absorption properties of cooled soot from a methane flame. Appl. Phys. B Lasers Opt. 104 (1):175–188. doi:10.1007/s00340-011-4448-9.
  • Colbeck, I., B. Atkinson, and Y. Johar. 1997. The morphology and optical properties of soot produced by different fuels. J. Aerosol Sci. 28 (5):715–723. doi:10.1016/S0021-8502(96)00466-1.
  • Cooper, D., and F. C. Alley. 2002. Air pollution control : A design approach. 3rd ed. Prospect Heights: Waveland Press Inc.
  • Corbin, D. J., and M. R. Johnson. 2014a. Interim report : Summary of flare efficiency and soot emission rate measurement results to date at Carleton University energy & emissions research lab. Introduction Test. Overview (582):1–15.
  • Corbin, D. J., and M. R. Johnson. 2014b. Detailed expressions and methodologies for measuring flare combustion efficiency, species emission rates, and associated uncertainties. Ind. Eng. Chem. Res. 53 (49):19359–19369. doi:10.1021/ie502914k.
  • Datta, A. 2008. Process engineering and design using visual basic. Boca Raton, FL: CRC Press.
  • ENVIRON. 2008. Cost analysis of HRVOC controls on polymer plants and contents. Houston, TX: ENVIRON International Corporation.
  • ETA. 2013. Visible emissions observer training manual, no. June. Garner, NC: Eastern Technical Associates, Inc.
  • Fortner, E. C., W. A. Brooks, T. B. Onasch, M. R. Canagaratna, P. Massoli, J. T. Jayne, J. P. Franklin, W. B. Knighton, J. Wormhoudt, D. R. Worsnop, C. E. Kolb, and S. C. Herndon. 2012. Particulate emissions measured during the TCEQ comprehensive flare emission study. Ind. Eng. Chem. Res. 51 (39):12586–12592. doi:10.1021/ie202692y.
  • Fry, C. R., J. Coburn, R. T. I. International, A. Bouchard, B. Shine, and E. P. A. Oaqps. 2012. No title. Research Triangle Park, NC.
  • Fuller, K. A., and S. M. Kreidenweis. 1999. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 104 (1998):941–954. doi:10.1029/1998JD100069.
  • Gallik, S. 2011. Transmittance and absorbance. Cell Biology OLM. Accessed March 29, 2017. http://cellbiologyolm.stevegallik.org/node/7.
  • Gogolek, P., A. Caverly, R. Schwarts, D. Seebold, and J. Pohl. 2010. Emissions from elevated flares–a survey of the literature, 88. Ottawa, Ontario: CanmetENERGY.
  • Jäger, C., T. Henning, R. Schlögl, and O. Spillecke. 1999. Spectral properties of carbon black. J. Non. Cryst. Solids 258 (1):161–179. doi:10.1016/S0022-3093(99)00436-6.
  • Jung, Y., K. C. Oh, C. Bae, and H. D. Shin. 2012. The effect of oxygen enrichment on incipient soot particles in inverse diffusion flames. Fuel 102:199–207. Elsevier Ltd. doi: 10.1016/j.fuel.2012.05.047.
  • Khalizov, A. F., H. Xue, L. Wang, J. Zheng, R. Zhang, A. F. Khalizov, H. Xue, L. Wang, J. Zheng, and R. Zhang. 2009. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. 1066–1074. doi: 10.1021/jp807531n.
  • Knighton, W. B., S. C. Herndon, J. F. Franklin, E. C. Wood, J. Wormhoudt, W. Brooks, E. C. Fortner, and D. T. Allen. 2012. Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton transfer reaction mass spectrometry and tunable infrared laser differential absorption spectroscopy. Ind. Eng. Chem. Res. 51 (39):12674–12684. doi:10.1021/ie202695v.
  • Korppoo, A. 2018. Russian associated petroleum gas flaring limits: Interplay of formal and informal institutions. Energy Policy 116 (May 2012):232–241. doi:10.1016/j.enpol.2018.02.005.
  • Lapuerta, M., F. J. Martos, and M. D. Cárdenas. 2005. Determination of light extinction efficiency of diesel soot from smoke opacity measurements. Meas. Sci. Technol. 16 (10):2048–2055. doi:10.1088/0957-0233/16/10/021.
  • Lazaridis, M. 2010. Atmospheric aerosols. In First principles of meteorology and air pollution, eds. B. J. Alloway and J. T. Trevors, chap. 5, 183. New York, NY: Springer.
  • Li, L., and P. B. Sunderland. 2013. Smoke points of fuel-fuel and fuel-inert mixtures. Fire Saf. J. 61:226–231. Elsevier. doi: 10.1016/j.firesaf.2013.09.001.
  • Linteris, G. T., and I. P. Rafferty. 2008. Flame size, heat release, and smoke points in materials flammability. Fire Saf. J. 43 (6):442–450. doi:10.1016/j.firesaf.2007.11.006.
  • LSC environmental products.2011. Combustion efficiency and regulatory compliance of cf-10 landfill gas flares. Apalachin, NY.
  • McAllister, S., J.-Y. Chen, and A. C. Fernandez-Pello. 2011. Fundam. Combust. Processes. doi: 10.1007/978-1-4419-7943-8.
  • Optical Properties. 2018. Accessed February 19, 2018. https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/pag/lecture2008/lecture3.pdf.
  • Orloff, L., and J. De Ris. 1982. Froude modeling of pool fires. Symp. Combust. 19 (1):885–895. doi:10.1016/S0082-0784(82)80264-6.
  • Pilat, M. J., and D. S. Ensor. 1970. Plume opacity and particle mass concentration. Atmospheic Environ. 4:163–173. doi:10.1016/0004-6981(70)90006-5.
  • Pohl, J. H., R. Payne, and J. Lee. 1984. Evaluation of the efficiency of industrial flares: Test results. U.S. EPA Office of Research and Development.
  • Rahimpour, M. R., and S. M. Jokar. 2012. Feasibility of flare gas reformation to practical energy in farashband gas refinery: No gas flaring. J. Hazard. Mater 209–210 (x):204–217. Elsevier B.V. doi: 10.1016/j.jhazmat.2012.01.017.
  • Rashbash, D. J., G. Ramachandran, B. Kandola, J. M. Watts, and M. Law. 2004. Evaluation of fire safety. New York, NY: John Wiley & Sons.
  • Ruggeri, D. 2004. No title. https://www.tceq.texas.gov/assets/public/permitting/air/memos/flareparameters.pdf.
  • Schnaiter, M., C. Linke, O. Möhler, K. H. Naumann, H. Saathoff, R. Wagner, U. Schurath, and B. Wehner. 2005. Absorption amplification of black carbon internally mixed with secondary organic Aerosol. J. Geophys. Res. D Atmos. 110 (19):1–11. doi:10.1029/2005JD006046.
  • Schwartz, R., J. White, and W. Bussman. 2001. In The John Zink combustion handbook, eds. C. E. J. Baukal and R. Schwartz (630–631). New York, NY: CRC Press.
  • Singh, K. D., P. Gangadharan, T. Dabade, V. Shinde, D. Chen, H. H. Lou, P. C. Richmond, and X. Li. 2014. Parametric study of ethylene flare operations using numerical simulation. Eng. Appl. Comput. Fluid Mech. 8 (2):211–228. doi:10.1080/19942060.2014.11015508.
  • Singh, K. D., T. Dabade, H. Vaid, P. Gangadharan, D. Chen, H. H. Lou, X. Li, K. Li, and C. B. Martin. 2012. Computational fluid dynamics modeling of industrial flares operated in stand-by mode. Ind. Eng. Chem. Res. 51 (39):12611–12620. doi:10.1021/ie300639f.
  • Stockham, J., and H. Betz. 1971. Study of visible exhaust smoke from aircraft jet engines. FAA-RD-71-22. IIT Research Institute. doi:10.4271/710428.
  • Stohl, A., Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky. 2013. Black carbon in the arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 13 (17):8833–8855. doi:10.5194/acp-13-8833-2013.
  • TCEQ. 2016. Accessed February 20, 2016. https://www.tceq.texas.gov/airquality/stationary-rules/voc/hrvoc.html.
  • U.S. EPA. 2002. Air pollution control technology fact sheet, 1–4. doi: 10.1044/1059-0889(2002/er01).
  • U.S. EPA. 2012. Enforcement alert. Accessed March 31, 2018. https://www.epa.gov/sites/production/files/documents/flaringviolations.pdf.
  • U.S. EPA. 2015. Part II. Vol. 80. http://www3.epa.gov/airtoxics/petrefine/RefineryRTR2060-AQ75Final_9-28-15disclaimer.pdf.
  • U.S. EPA. 2017. Visible emissions regulations. Accessed May 1, 2018. https://www.epa.gov/sites/production/files/2017-11/documents/chapt-05-2017.pdf.
  • U.S. EPA, and OAQPS. 2012. Parameters for properly designed and operated flares, Report for Flare Review Panel, U.S.  EPA Office of Air Quality Planning and Standards (OAQPS), Washington, DC., April 2012.
  • UNL. 2008. Safe operating procedure. ( 402):13–16.
  • US Environmental Protection Agency. 2009. Volume 1: Stationary point and area sources. AP 42. Compil. Air Pollut. Emiss. Factors 1:13.5-1–13.5-5.
  • Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger. 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34 (10):1445–1463. doi:10.1016/S0021-8502(03)00359-8.
  • World Bank. 2018. No title. Accessed May 23, 2018. http://www.worldbank.org/en/programs/gasflaringreduction#7.
  • Xin, Y. 2014. Estimation of chemical heat release rate in rack storage fires based on flame volume. Fire Saf. J. 63:29–36. Elsevier. doi: 10.1016/j.firesaf.2013.11.004.
  • Yuen, A. C. Y., G. H. Yeoh, V. Timchenko, T. B. Y. Chen, Q. N. Chan, C. Wang, and D. D. Li. 2017. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int. J. Heat Mass Transf. 115:717–729. doi:10.1016/j.ijheatmasstransfer.2017.08.074.
  • Zeng, Y., J. Morris, and M. Dombrowski. 2016. Validation of a new method for measuring and continuously monitoring the efficiency of industrial flares. J. Air Waste Manag. Assoc. 66 (1):76–86. doi:10.1080/10962247.2015.1114045.
  • Zhang, X., L. Hu, Q. Wang, X. Zhang, and P. Gao. 2015. A mathematical model for flame volume estimation based on flame height of turbulent gaseous fuel jet. Energy Convers. Manag 103:276–283. Elsevier Ltd. doi: 10.1016/j.enconman.2015.06.061.
  • Zolfaghari, M., V. Pirouzfar, and H. Sakhaeinia. 2017. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants. Energy 124:481–491. Elsevier Ltd. doi: 10.1016/j.energy.2017.02.084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.