1,470
Views
8
CrossRef citations to date
0
Altmetric
Technical Paper

A novel bagging ensemble approach for predicting summertime ground-level ozone concentration

&
Pages 220-233 | Received 18 Jun 2018, Accepted 07 Oct 2018, Published online: 06 Dec 2018

References

  • Abdul-Wahab, S. A., C. S. Bakheit, and S. M. Al-Alawi. 2005. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model. Softw. 20:1263–1271. doi:10.1016/j.envsoft.2004.09.001.
  • Adame, J. A., and J. G. Sole. 2013. Surface ozone variations at a rural area in the northeast of the Iberian Peninsula. Atmos. Pollut. Res. 4:130–141. doi:10.5094/APR.2013.013.
  • Adam-Poupart, A., A. Brand, M. Fournier, M. Jerrett, and A. Smargiassi. 2014. Spatiotemporal modeling of ozone levels in quebec (canada): a comparison of kriging, land-use regression (lur), and combined bayesian maximum entropy-lur approaches. Environ. Health Perspect. 122:970–976. doi: 10.1289/ehp.1306566.
  • Al Abri, E. S., E. A. Edirisinghe, A. Nawadha, and U. Kingdom. 2015. Modelling ground-level ozone concentration using ensemble learning algorithms. Int. Conf. Data Min. (DMIN). Steer. Comm. World Congr. Comput. Sci. Comput. Eng. Appl. Comput 148–154.
  • Anav, A., A. De Marco, C. Proietti, A. Alessandri, A. Dell’Aquila, I. Cionni, P. Friedlingstein, D. Khvorostyanov, L. Menut, E. Paoletti, P. Sicard, S. Sitch, and M. Vitale. 2015. Comparing concentration-based (aot40) and stomatal uptake (pody) metrics for ozone risk assessment to european forests. Glob. Chang. Biol. 22:1608–1627. doi: 10.1111/gcb.13138.
  • Astitha, M., H. Luo, S. T. Rao, C. Hogrefe, R. Mathur, and N. Kumar. 2017. Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States. Atmos. Environ. 164:102–116. doi:10.1016/j.atmosenv.2017.05.020.
  • Awang, N. R., N. A. Ramli, A. S. Yahaya, and M. Elbayoumi. 2015. Multivariate methods to predict ground level ozone during daytime, nighttime, and critical conversion time in urban areas. Atmos. Pollut. Res. 6:726–734. doi:10.5094/APR.2015.081.
  • Barrero, M. A., J. O. Grimalt, and L. Cantón. 2006. Prediction of daily ozone concentration maxima in the urban atmosphere. Chemom. Intell. Lab. Syst. 80:67–76. doi:10.1016/j.chemolab.2005.07.003.
  • Beli, D. S. 2006. Global warming and greenhouse gases. Physics, chemistry and Technology, Facta Universitatis, 4, 45–55.
  • Boynard, A., M. Beekmann, G. Foret, A. Ung, S. Szopa, C. Schmechtig, and A. Coman. 2011. An ensemble assessment of regional ozone model uncertainty with an explicit error representation. Atmos. Environ. 45:784–793. doi:10.1016/j.atmosenv.2010.08.006.
  • Brankov, E., R. F. Henry, K. L. Civerolo, W. Hao, S. T. Rao, P. K. Misra, R. Bloxam, and N. Reid. 2003. Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA. Environ. Pollut. 123:403–411. doi:10.1016/S0269-7491(03)00017-4.
  • Calatayud, V., Diéguez, J.J., Sicard, P., Schaub, M., De Marco, A. Testing approaches for calculating stomatal ozone fluxes from passive samplers. Sci. Total Environ. 572:56–67. doi: 10.1016/j.scitotenv.2016.07.155.
  • Cannon, A. J., E. R. Lord. 2011. Forecasting summertime surface-level ozone concentrations in the lower fraser valley of British Columbia: An ensemble neural network approach. J. Air Waste Manag. Assoc. 50: 322–339.. doi:10.1080/10473289.2000.10464024.
  • Dawson, J. P., P. J. Adams, and S. N. Pandis. 2007. Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ. 41:1494–1511. doi:10.1016/j.atmosenv.2006.10.033.
  • Dietterich, T. G. 2000. Ensemble methods in machine learning. Mult. Classif. Syst. 1857:1–15. doi:10.1007/3-540-45014-9.
  • Erdal, H., and İ. Karahanoğlu. 2016. Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks. Appl. Soft Comput. J. 49:861–867. doi:10.1016/j.asoc.2016.09.010.
  • Finlayson-pitts, B.J., and J.N. Pitts, 2000. Chemistry of the Upper and Lower Atmosphere. Theory, experiments, and applications, in: Academic Press. p. 969. doi: 10.1016/B978-0-12-257060-5.50027-7
  • Friedman, J. H. 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38:367–378. doi:10.1016/S0167-9473(01)00065-2.
  • Gabusi, V., E. Pisoni, and M. Volta. 2005. Transboundary pollution and local emission impact in tropospheric ozone accumulation processes: Control strategy modelling assessment. Proc. 44th IEEE Conf. Decis. Control 7404–7409. doi:10.1109/CDC.2005.1583356.
  • Gao, M., L. Yin, and J. Ning. 2018. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. Atmos. Environ. 184:129–139. doi:10.1016/j.atmosenv.2018.03.027.
  • Ghorani-Azam, A., B. Riahi-Zanjani, and M. Balali-Mood. 2016. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 21:65. doi:10.4103/1735-1995.189646.
  • Gong, B., and J. Ordieres-Meré. 2016. Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Environ. Model. Softw. 84:290–303. doi:10.1016/j.envsoft.2016.06.020.
  • Gorai, A. K., F. Tuluri, P. B. Tchounwou, and S. Ambinakudige. 2015. Influence of local meteorology and NO(2) conditions on ground-level ozone concentrations in the eastern part of Texas, USA. Air Qual. Atmos. Health 8:81–96. doi:10.1007/s11869-014-0276-5.
  • Green, I. R. A., and D. Stephenson. 1986. Criteria for comparison of single event models. Hydrol. Sci. J. 31:395–411. doi:10.1080/02626668609491056.
  • Gupta, M., and M. Mohan. 2015. Validation of WRF/Chem model and sensitivity of chemical mechanisms to ozone simulation over megacity Delhi. Atmos. Environ. 122:220–229. doi:10.1016/j.atmosenv.2015.09.039.
  • Hacer, Y. A. M., E. Aykut, E. Halil, and E. Hamit. 2015. Optimizing the monthly crude oil price forecasting accuracy via bagging ensemble models. J. Econ. Int. Financ 7:127–136. doi:10.5897/JEIF2014.0629.
  • Hoshyaripour, G., G. Brasseur, M. F. Andrade, M. Gavidia-Calderón, I. Bouarar, and R. Y. Ynoue. 2016. Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models. Atmos. Environ. 145:365–375. doi:10.1016/j.atmosenv.2016.09.061.
  • Javanmardi, P., P. Morovati, M. Farhadi, S. Geravandi, Y. O. Khaniabadi, K. A. Angali, A. M. Taiwo, P. Sicard, G. Goudarzi, A. Valipour, A. De Marco, B. Rastegarimehr, and M. J. Mohammadi. 2018. Monitoring the impact of ambient ozone on human health using time series analysis and air quality model approaches. Fresenius Environ. Bull. 27:533–544.
  • Jellinek, H. H. G. 1973. Reactions of linear polymers with nitrogen dioxide and sulfur dioxide. Text. Res. J. 43:557–560. doi:10.1177/004051757304301001.
  • Jenkin, M.E., and K.C. Clemitshaw. 2002. Chapter 11 ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Dev. Environ. Sci. 1:285–338. doi: 10.1016/S1474-8177(02)80014-6.
  • Jerrett, M., A. Arain, P. Kanaroglou, B. Beckerman, D. Potoglou, T. Sahsuvaroglu, J. Morrison, and C. Giovis. 2004. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 15:185. doi:10.1038/sj.jea.7500388.
  • Jiang, Z., B. Mao, X. Meng, X. Du, S. Liu, and S. Li. 2010. An air quality forecast model based on the BP neural network of the samples self-organization clustering. 2010 Sixth Int. Conf. Natural Comput. 1523–1527. doi:10.1109/ICNC.2010.5582643.
  • Karlický, J., P. Huszár, and T. Halenka. 2017. Validation of gas phase chemistry in the wrf-chem model over europe. Adv. Sci. Res. 14:181-186. doi: 10.5194/asr-14-181-2017.
  • Lee, D. S., M. R. Holland, and N. Falla. 1996. The potential impact of ozone on materials in the. U.K. Atmos. Environ. 30:1053–1065. doi:10.1016/1352-2310(95)00407-6.
  • Lefohn, A. S., C. S. Malley, L. Smith, B. Wells, M. Hazucha, H. Simon, V. Naik, G. Mills, M. G. Schultz, E. Paoletti, et al. 2018. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anth. 6:28. doi:10.1525/elementa.279.
  • Liu, H., S. Liu, B. Xue, Z. Lv, Z. Meng, X. Yang, T. Xue, Q. Yu, and K. He. 2018. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 173:223–230. doi:10.1016/j.atmosenv.2017.11.014.
  • Lu, W. Z., and D. Wang. 2014a. Learning machines: Rationale and application in ground-level ozone prediction. Appl. Soft Comput. J. 24:135–141. doi:10.1016/j.asoc.2014.07.008.
  • Lu, W.-Z., and D. Wang. 2014b. Learning machines: Rationale and application in ground-level ozone prediction. Appl. Soft Comput. 24:135–141. doi:10.1016/j.asoc.2014.07.008.
  • Mishra, D., and P. Goyal. 2016. Neuro-Fuzzy approach to forecasting Ozone Episodes over the urban area of Delhi, India. Environ. Technol. Innov. 5:83–94. doi:10.1016/j.eti.2016.01.001.
  • Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol. 10:282–290. doi:10.1016/0022-1694(70)90255-6.
  • Nawahda, A. 2016. An assessment of adding value of traffic information and other attributes as part of its classifiers in a data mining tool set for predicting surface ozone levels. Process Saf. Environ. Prot. 99:149–158. doi:10.1016/j.psep.2015.11.004.
  • Pal, S., T. R. Lee, S. Phelps, and S. F. J. De Wekker. 2014. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci. Total Environ. 496:424–434. doi:10.1016/j.scitotenv.2014.07.067.
  • Pineda Rojas, A. L., L. E. Venegas, and N. A. Mazzeo. 2016. Uncertainty of modelled urban peak O3concentrations and its sensitivity to input data perturbations based on the Monte Carlo analysis. Atmos. Environ. 141:422–429. doi:10.1016/j.atmosenv.2016.07.020.
  • Proietti, C., A. Anav, A. De Marco, P. Sicard, and M. Vitale. 2016. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Sci. Total Environ. 556:1–11. doi:10.1016/j.scitotenv.2016.02.187.
  • Sicard, P., A. Anav, A. De Marco, and E. Paoletti. 2017. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. 17:12177–12196. doi:10.5194/acp-17-12177-2017.
  • Sicard, P., R. Serra, and P. Rossello. 2016. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 149:122–144. doi:10.1016/j.envres.2016.05.014.
  • Singh, K. P., S. Gupta, and P. Rai. 2013. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 80:426–437. doi:10.1016/j.atmosenv.2013.08.023.
  • Swanson, T.J., and J. Chapman 2018. Ozone Toxicity. Treasure Island, FL: StatPearls Publications.
  • Tan, K. C., H. San Lim, and M. Z. M. Jafri. 2016. Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: A case study in peninsular Malaysia. Atmos. Pollut. Res. 7:533–546. doi:10.1016/j.apr.2016.01.002.
  • Thi, H., E. E. Kwon, K. Kim, S. Kumar, S. Chambers, P. Kumar, C. Kang, S. Cho, J. Oh, and R. J. C. Brown. 2017. Factors regulating the distribution of O 3 and NO x at two mountainous sites in Seoul, Korea. Atmos. Pollut. Res. 8:328–337. doi:10.1016/j.apr.2016.10.003.
  • Tong, N. Y. O., D. Y. C. Leung, and C.-H. Liu. 2011. A review on ozone evolution and its relationship with boundary layer characteristics in urban environments. Water, Air, Soil Pollut 214:13–36. doi:10.1007/s11270-010-0438-5.
  • Wang, J., and G. Song. 2018. A deep spatial-temporal ensemble model for air quality prediction. Neurocomputing. doi:10.1016/j.neucom.2018.06.049.
  • Watson, AY., RR. Bates, and D. Kennedy. 1998. Air pollution, the automobile, and public health. Washington, DC: National Academies Press (US. Atmospheric Transport and Dispersion of Air Pollutants Associated with Vehicular Emissions). https://www.ncbi.nlm.nih.gov/books/NBK218142/.
  • Willmott, C. J. 1981. On the validation of models. Phys. Geogr. 2:184–194. doi:10.1080/02723646.1981.10642213.
  • Xiao, Y., J. Wu, Z. Lin, and X. Zhao. 2018. A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 153:1–9. doi:10.1016/j.cmpb.2017.09.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.