1,295
Views
10
CrossRef citations to date
0
Altmetric
Technical Paper

Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China

, , , , &
Pages 234-245 | Received 15 May 2018, Accepted 01 Oct 2018, Published online: 05 Nov 2018

References

  • Bai, X., H. Ding, J. Lian, D. Ma, X. Yang, N. Sun, W. Xue, and Y. Chang. 2017a. Coal production in China: Past, present, and future projections. Int. Geol. Rev 60 (5-6):1–13.
  • Bai, X., H. Ding, J. Lian, D. Ma, X. Yang, N. Sun, W. Xue, and Y. Chang. 2017b. Coal production in China: Past, present, and future projections. Int. Geol. Rev 60 (5-6):1–13.
  • Burmistrz, P., K. Kogut, M. Marczak, and J. Zwoździak. 2016. Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Process. Technol. 152:250–258. doi:10.1016/j.fuproc.2016.06.011.
  • Cao, Y., Y. Duan, S. Kellie, L. Li, W. Xu, J. T. R. And, W. P. Pan, P. C. And, A. K. Mehta, and R. Carty. 2005. Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOx burners. Energy Fuels 19 (3):842–854. doi:10.1021/ef034107u.
  • Chen, L. 2010. Study on environmental geochemistry of chlorine in Chinese coals. Nancahng Univ.
  • China Environment Yearbook Association. 2011. Production, disposal and utilization of industrial solid waste by region. China environmental yearbook22,611-615.
  • Durnford, D., A. Dastoor, D. Figuerasnieto, and A. Ryjkov. 2010. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 10 (13):6063–6086. doi:10.5194/acp-10-6063-2010.
  • Feng, X., J. Sommar, O. Lindqvist, and Y. Hong. 2002. Occurrence, emissions and deposition of mercury during coal combustion in the Province Guizhou, China. Water Air Soil Pollut. 139 (1):311–324. doi:10.1023/A:1015846605651.
  • Galbreath, K. C., and C. J. Zygarlicke. 2000. Mercury transformations in coal combustion flue gas. Fuel Process. Technol. 65 (99):289–310. doi:10.1016/S0378-3820(99)00102-2.
  • Goodarzi, F. 2004. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals. J. Environ. Monit. 6 (10):792–798. doi:10.1039/b401827c.
  • Hui, M. L., Z. Lei, Z. G. Wang, and S. X. Wang. 2015. The mercury mass flow and emissions of coal-fired power plants in China. China Environ. Sci. 35 (8):2241–2250.
  • Jiang, G. B., J. B. Shi, and X. B. Feng. 2006. Mercury pollution in China. Environ. Sci. Technol. 40 (12):3672–3678. doi:10.1021/es062707c.
  • Kellie, S., Y. Duan, Y. Cao, P. Chu, A. Mehta, R. Carty, K. Liu, W. P. Pan, and J. T. Riley. 2004. Mercury emissions from a 100-MW wall-fired boiler as measured by semicontinuous mercury monitor and Ontario Hydro Method. Fuel Process. Technol. 85 (6–7):487–499. doi:10.1016/j.fuproc.2003.11.004.
  • Kumari, A., B. Kumar, S. Manzoor, and U. Kulshrestha. 2015. Status of atmospheric mercury research in South Asia: A review. Aerosol Air Qual. Res. 2015:3.
  • Lee, J. Y., K. Cho, L. Cheng, T. C. Keener, G. Jegadeesan, and S. R. Al-Abed. 2009. Investigation of a mercury speciation technique for flue gas desulfurization materials. Air Repair 59 (8):972–979.
  • Li, C., Q. Zhang, N. A. Krotkov, D. G. Streets, K. He, S. C. Tsay, and J. F. Gleason. 2010. Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument. Geophys. Res. Lett 37 (8):292–305. doi:10.1029/2010GL042594.
  • Li, C., Y. Duan, H. Tang, C. Zhu, Y. Zheng, and T. Huang. 2018. Mercury emissions monitoring in a coal-fired power plant by using the EPA method 30B based on a calcium-based sorbent trap. Fuel 221:171–178. doi:10.1016/j.fuel.2018.02.077.
  • Li, Y. 2012. Dynamics of clean coal-fired power generation development in China. Energy Policy 51 (6):138–142. doi:10.1016/j.enpol.2011.06.012.
  • Li, Z. G., X. B. Feng, G. H. Li, R. S. Yin, and B. Yu. 2012. Mass balance and isotope characteristics of Mercury in two coal-fired power plants in Guizhou, China. Adv. Mater. Res. 518-523:2576–2579. doi:10.4028/www.scientific.net/AMR.518-523.
  • Loewen, M., S. Kang, D. Armstrong, Q. Zhang, A. Gregg Tomy, and F. Wang. 2007. Atmospheric transport of Mercury to the Tibetan Plateau. Environ. Sci. Technol. 41 (22):7632. doi:10.1021/es0710398.
  • Meng, Y., and S. Wang. 2012. Study on mercury re-emissions during fly ash utilization (in Chinese). Environ. Sci. 39 (6):2993–2999.
  • Noel, J. D., P. Biswas, and D. Giammar. 2007. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts, 57:856–867.
  • Pacyna, E. G., J. M. Pacyna, F. Steenhuisen, and S. Wilson. 2006. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40 (22):4048–4063. doi:10.1016/j.atmosenv.2006.03.041.
  • Pacyna, J. M., O. Travnikov, F. De Simone, I. M. Hedgecock, K. Sundseth, E. G. Pacyna, F. Steenhuisen, N. Pirrone, J. Munthe, and K. Kindbom. 2016. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 16:1–35. doi:10.5194/acp-16-12495-2016.
  • Pavlish, J. H., E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson. 2003. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82 (2):89–165. doi:10.1016/S0378-3820(03)00059-6.
  • Qin, Y., T. A. Moore, J. Shen, Z. Yang, Y. Shen, and G. Wang. 2017. Resources and geology of coalbed methane in China: A review. Int. Geol. Rev 1:1–36.
  • Qiu, G., X. Feng, S. Wang, and L. Shang. 2006. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou China. Environ. Pollut. 142 (3):549–558. doi:10.1016/j.envpol.2005.10.015.
  • Riget, F., R. Dietz, P. Johansen, and G. Asmund. 2000. Lead, cadmium, mercury and selenium in Greenland marine biota and sediments during AMAP phase 1. Sci. Total Environ. 245 (1–3):3. doi:10.1016/S0048-9697(99)00429-5.
  • Seigneur, C., K. Vijayaraghavan, K. Lohman, A. Prakash Karamchandani, and C. Scott. 2004. Global source attribution for mercury deposition in the United States. Environ. Sci. Technol. 38 (2):555–569. doi:10.1021/es034109t.
  • Senior, C. L., A. F. Sarofim, T. Zeng, J. J. Helble, and R. Mamani-Paco. 2000. Gas-phase transformations of mercury in coal-fired power plants. Fuel Process. Technol. 63 (2):197–213. doi:10.1016/S0378-3820(99)00097-1.
  • Shuxiao, W., and Jiming. 2012. Air quality management in China: Issues,challenges,andoptions. Acta Sci. Circum 24 (1):2–13.
  • Shuxiao, W., Z. Xing, J. Carey, and Jiming. 2014. Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. J. Environ. Sci. 26 (1):13–22. doi:10.1016/S1001-0742(13)60381-2.
  • Srivastava, R. K., N. Hutson, B. Martin, F. Princiotta, and J. Staudt. 2006. Control of mercury emissions from coal-fired electric utility boilers. Environ. Sci. Technol. 40 (5):1385. doi:10.1021/es062639u.
  • Streets, D. G., J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian, and X. Feng. 2005. Anthropogenic mercury emissions in China. Atmos. Environ. 39 (40):7789–7806. doi:10.1016/j.atmosenv.2005.08.029.
  • Tang, S., L. Wang, X. Feng, Z. Feng, R. Li, H. Fan, and K. Li. 2016. Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, Northern China. Fuel 180:194–204. doi:10.1016/j.fuel.2016.04.037.
  • Tang, S., X. Feng, J. Qiu, G. Yin, and Z. Yang. 2007. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China. Environ. Res. 105 (2):175–182. doi:10.1016/j.envres.2007.03.008.
  • Tao, S., C. Li, X. Fan, G. Zeng, P. Lu, X. Zhang, Q. Wen, W. Zhao, D. Luo, and C. Fan. 2012. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem. Eng. J. 210 (210):547–556. doi:10.1016/j.cej.2012.09.028.
  • Temme, C., J. W. Einax, R. Ebinghaus, and W. H. Schroeder. 2003. Measurements of atmospheric mercury species at a coastal site in the Antarctic and over the south Atlantic Ocean during polar summer. Environ. Sci. Technol. 37 (1):22. doi:10.1021/es025884w.
  • Tian, H., Y. Wang, Z. Xue, Y. Qu, F. Chai, and J. Hao. 2011. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Sci. Total Environ. 409 (16):3078–3081. doi:10.1016/j.scitotenv.2011.04.039.
  • Wang, Q., A. Wenguo Shen, and Z. Ma. 2000. Estimation of mercury emission from coal combustion in China. China Environmentalence 34 (13):2711–2713.
  • Wang, S., J. Xing, B. Zhao, C. Jang, and J. Hao. 2014. Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. Acta Sci. Circum 26 (1):13–22.
  • Wdowin, M., M. Macherzyński, R. Panek, J. Górecki, and W. Franus. 2015. Investigation of the sorption of mercury vapour from exhaust gas by an Ag-X zeolite. Clay. Miner. 50 (1):31–40. doi:10.1180/claymin.2015.050.1.04.
  • Wdowin, M., M. M. Wiatros-Motyka, R. Panek, L. A. Stevens, W. Franus, and C. E. Snape. 2014. Experimental study of mercury removal from exhaust gases. Fuel 128 (28):451–457. doi:10.1016/j.fuel.2014.03.041.
  • Wiatros-Motyka, M. M., C. G. Sun, L. A. Stevens, and C. E. Snape. 2013. High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel 109 (7):559–562. doi:10.1016/j.fuel.2013.03.019.
  • Withum, J. A. 2004. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS. Off. Scientific Tech. Inf. Tech. Rep. doi:10.2172/888537
  • Wu, J., Y. Cao, W. Pan, and W. Pan. 2015. The status of mercury emission from coal combustion power station, Springer Berlin Heidelberg, 19–30.
  • Wu, Y., D. G. Streets, S. X. Wang, and J. M. Hao. 2010. Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmos. Chem. Phys. 9 (6):2937–2946. doi:10.5194/acp-10-2937-2010.
  • Wu, Y. L., D. G. Rahmaningrum, Y. C. Lai, L. K. Tu, S. J. Lee, L. C. Wang, and G. P. Chang-Chien. 2012. Mercury emissions from a coal-fired power plant and their impact on the nearby environment. Aerosol Air Qual. Res. 12 (4):643–650. doi:10.4209/aaqr.2012.04.0080.
  • Xu, M., Y. Qiao, C. Zheng, L. Li, and J. Liu. 2003. Modeling of homogeneous mercury speciation using detailed chemical kinetics. Combust. Flame 132 (1–2):208–218. doi:10.1016/S0010-2180(02)00438-8.
  • Yang, Y., Q. Huang, and Q. Wang. 2012. Ignoring emissions of Hg from coal ash and desulfurized gypsum will lead to ineffective mercury control in coal-fired power plants in China. Environ. Sci. Technol. 46 (6):3058. doi:10.1021/es300786d.
  • Yokoyama, T., K. Asakura, H. Matsuda, S. Ito, and N. Noda. 2000. Mercury emissions from a coal-fired power plant in Japan. Sci. Total Environ. 259 (1):97–103.
  • Yueyang, X., X. Jianming, W. Hongliang, L. Bing, G. Yiming, and L. Jun. 2014. Research on Mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants. Proc. CSEE 34 (23):3924–3931.
  • Zhang, J. Y., C. G. Zheng, D. Y. Ren, C. L. Chou, J. Liu, R. S. Zeng, Z. P. Wang, F. H. Zhao, and Y. T. Ge. 2004. Distribution of potentially hazardous trace elements in coals from Shanxi province, China. Fuel 83 (1):129–135. doi:10.1016/S0016-2361(03)00221-7.
  • Zhang, L., and M. H. Wong. 2007. Environmental mercury contamination in China: Sources and impacts ☆. Environ. Int. 33 (1):108–121. doi:10.1016/j.envint.2006.06.022.
  • Zhang, L., S. Wang, Y. Meng, and J. Hao. 2012. Influence of Mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environ. Sci. Technol. 46 (11):6385. doi:10.1021/es300286n.
  • Zou, R., X. Zeng, G. Luo, Y. Qiu, B. Zhang, Y. Xu, H. Wu, and H. Yao. 2016. Mercury stability of byproducts from wet flue gas desulfurization devices. Fuel 186:215–221. doi:10.1016/j.fuel.2016.08.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.