2,323
Views
9
CrossRef citations to date
0
Altmetric
Articles

The emissions from co-firing of biomass and torrefied biomass with coal in a chain-grate steam boiler

, , , , , , , , , , , , , , & show all
Pages 1467-1478 | Received 10 Apr 2019, Accepted 26 Aug 2019, Published online: 28 Oct 2019

References

  • Al-Mansour, F., and J. Zuwala. 2010. An evaluation of biomass co-firing in Europe. Biomass Bioenerg. 34 (5):620–29. doi:10.1016/j.biombioe.2010.01.004.
  • Armesto, L., A. Bahillo, K. Veijonen, A. Cabanillas, and J. Otero. 2002. Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenerg. 23 (3):171–79. doi:10.1016/S0961-9534(02)00046-6.
  • Baxter, L. 2005. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 84 (10):1295–302. doi:10.1016/j.fuel.2004.09.023.
  • Beř, J. M., M. T. Jacques, and W. F. Farmayan. 1981. Control of NOx by Combustion Process Modifications. Energy Laboratory Report (Energy Laboratory, Massachusetts Institute of Technology), Cambridge.
  • Bundesministerium der Justiz und für Verbraucherschutz. 2018a. Bundes-Immissionsschutzgesetz (13. Blmschv)-Die Verordnung über Großfeuerungs- und Gasturbinenanlagen, Germany. Accessed August 22, 2018. https://www.gesetze-im-internet.de/bimschv_13_2013/BJNR102300013.html.
  • Bundesministerium der Justiz und für Verbraucherschutz. 2018b. Bundes-Immissionsschutzgesetz (1. Blmschv)-Die Verordnung über kleine und mittlere Feuerungsanlagen, Germany. Accessed August 22, 2018. https://www.gesetze-im-internet.de/bimschv_1_2010/BJNR003800010.html.
  • Chen, Y. H., C. C. Chang, C. Y. Chang, M. H. Yuan, D. R. Ji, J. L. Shie, C. H. Lee, Y. H. Chen, W. R. Chang, T. Y. Yang, et al. 2017a. Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal. J. Anal. Appl. Pyrol. 126:315–22. doi:10.1016/j.jaap.2017.05.015.
  • Chen, Y. H., C. C. Chang, C. Y. Chang, M. H. Yuan, D. R. Ji, J. L. Shie, C. H. Lee, Y. H. Chen, W. R. Chang, T. Y. Yang, et al. 2017b. The by-products and emissions from manufacturing torrefied solid fuel using waste bamboo chopsticks. Environments 4 (2):36. doi:10.3390/environments4020036.
  • Davis, W. T., and M. A. Fiedler. 1982. The retention of sulfur in fly ash from coal-fired boilers. J. Air Waste. Ma. 32 (4):395–97. doi:10.1080/00022470.1982.10465419.
  • Dayton, D. 2002. A summary of NOx emissions reduction from biomass cofiring, technical report. DOE Task No. BP02, 1030. National Renewable Energy Laboratory, Golden.
  • Desroches-Ducarne, E., E. Marty, G. Martin, and L. Delfosse. 1998. Co-combustion of coal and municipal solid waste in a circulating fluidized bed. Fuel 77 (12):1311–15. doi:10.1016/S0016-2361(98)00049-0.
  • Gani, A., K. Morishita, K. Nishikawa, and I. Naruse. 2005. Characteristics of co-combustion of low-rank coal with biomass. Energ. Fuel. 19 (4):1652–59. doi:10.1021/ef049728h.
  • Hupa, M. 2005. Interaction of fuels in co-firing in FBC. Fuel 84 (10):1312–19. doi:10.1016/j.fuel.2004.07.018.
  • IEA Bioenergy Task 32. 2013. Biomass combustion and co-firing, database of biomass co-firing (Version 2.0). Accessed January 26, 2019. http://www.ieabcc.nl/database/cofiring.php.
  • Jiménez, S., and J. Ballester. 2005. Effect of co-firing on the properties of submicron aerosols from biomass combustion. P. Combust. Inst. 30 (2):2965–72. doi:10.1016/j.proci.2004.08.099.
  • Johansson, L. S., C. Tullin, B. Leckner, and P. Sjövall. 2003. Particle emissions from biomass combustion in small combustors. Biomass Bioenerg. 25 (4):435–46. doi:10.1016/S0961-9534(03)00036-9.
  • Johnsson, J. E. 1994. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel 73 (9):1398–415. doi:10.1016/0016-2361(94)90055-8.
  • Leckner, B., and M. Karlsson. 1993. Gaseous emissions from circulating fluidized bed combustion of wood. Biomass Bioenerg. 4 (5):379–89. doi:10.1016/0961-9534(93)90055-9.
  • Limousy, L., M. Jeguirim, P. Dutournié, N. Kraiem, M. Lajili, and R. Said. 2013. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107:323–29. doi:10.1016/j.fuel.2012.10.019.
  • Maciejewska, A., H. Veringa, J. Sanders, and S. Peteves. 2006. Co-firing of biomass with coal: Constraints and role of biomass pre-treatment. Petten: Institute for Energy.
  • Maenhaut, W., M.-T. Fernández-Jiménez, T. Lind, E. Kauppinen, T. Valmari, G. Sfiris, and K. Nilsson. 1999. In-stack particle size and composition transformations during circulating fluidized bed combustion of willow and forest residue. Nucl. Instrum. Meth. B. 150 (1):417–21. doi:10.1016/S0168-583X(98)01068-4.
  • Niksa, S., G. Liu, L. Felix, P. V. Bush, and D. M. Boylan. 2003. Predicting NOx emissions from biomass cofiring. Paper presented at 28th Int. Technical Conf. on Coal Utilization and Fuel Systems for Coal Techn. Ass., Clearwater, Fl. Accessed January 26, 2019. http://www.niksaenergy.com/images/pdf/2135BioNOx.pdf.
  • Nussbaumer, T. 2003. Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction. Energ. Fuel. 17 (6):1510–21. doi:10.1021/ef030031q.
  • Ren, X., E. Rokni, Y. Liu, and Y. A. Levendis. 2018. Reduction of HCl emissions from combustion of biomass by alkali carbonate sorbents or by thermal pretreatment. J. Energ. Eng. 144 (4):04018045. doi:10.1061/(asce)ey.1943-7897.0000561.
  • Ruscio, A., F. Kazanc, and Y. A. Levendis. 2016. Comparison of fine ash emissions generated from biomass and coal combustion and valuation of predictive furnace deposition indices: A review. J. Energ. Eng. 142 (2):E4015007. doi:10.1061/(asce)ey.1943-7897.0000310.
  • Sotiropoulos, D., A. Georgakopoulos, and N. Kolovos. 2005. Impact of free calcium oxide content of fly ash on dust and sulfur dioxide emissions in a lignite-fired power plant. J. Air Wast. Ma. 55 (7):1042–49. doi:10.1080/10473289.2005.10464694.
  • TEPA (Taiwan Environmental Protection Administration). 2013a. Air pollutant emission standards of stationary sources. Accessed June 4, 2019. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020006.
  • TEPA (Taiwan Environmental Protection Administration). 2013b. Air Pollutant Emission Standards of Steam and Electricity Symbiosis Equipment Boilers. Accessed June 4, 2019. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020026.
  • Veijonen, K., P. Vainikka, T. Järvinen, and E. Alakangas. 2003. Biomass co-firing–An efficient way to reduce greenhouse gas emissions. Jyväskylä: VTT Processes. Accessed June 4, 2019. https://ec.europa.eu/energy/sites/ener/files/documents/2003_cofiring_eu_bionet.pdf.
  • Wan, H.-P., Y.-H. Chang, W.-C. Chien, H.-T. Lee, and -C.-C. Huang. 2008. Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler. Fuel 87 (6):761–67. doi:10.1016/j.fuel.2007.06.004.
  • Wang, Q., H. Yao, D. Yu, L. Dai, and M. Xu. 2007. Emission behavior of particulate matter during co-combustion of coal and biomass in a drop tube furnace. Energ. Fuel. 21 (2):513–16. doi:10.1021/ef060410u.
  • Wei, X., Y. Wang, D. Liu, and H. Sheng. 2009. Influence of HCl on CO and NO emissions in combustion. Fuel 88 (10):1998–2003. doi:10.1016/j.fuel.2009.03.009.
  • Zhang, L., Y. Ninomiya, Q. Wang, and T. Yamashita. 2011. Influence of woody biomass (cedar chip) addition on the emissions of PM10 from pulverised coal combustion. Fuel 90 (1):77–86. doi:10.1016/j.fuel.2010.08.017.
  • Zhou, K., M. Xu, D. Yu, X. Liu, C. Wen, Z. Zhan, and H. Yao. 2010. Formation and control of fine potassium-enriched particulates during coal combustion. Energ. Fuel. 24 (12):6266–74. doi:10.1021/ef101190x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.