1,054
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of thermal shock process on the microstructure and peel resistance of single–sided copper clad laminates used in waste printed circuit boards

ORCID Icon, , &
Pages 1490-1502 | Received 04 Apr 2019, Accepted 13 Sep 2019, Published online: 28 Oct 2019

References

  • Ai, S., H. Fu, R. He, and Y. Pei. 2015. Multi-scale modeling of thermal expansion coefficients of C/C composites at high temperature. Mater. Des. 82:181–88. doi:10.1016/j.matdes.2015.05.061.
  • Alenezi, R. A., and F. M. Al-Fadhli. 2018. Thermal degradation kinetics of waste printed circuit boards. Chem. Eng. Res. Des. 130:87–94. doi:10.1016/j.cherd.2017.12.005.
  • Barontini, F., K. Marsanich, L. Petarca, and V. Cozzani. 2005. Thermal degradation and decomposition products of electronic boards containing BFRs. Ind. Eng. Chem. Res. 44 (12):4186–99. doi:10.1021/ie0487661.
  • Chen, Y., J. Li, H. Duan, and Z. Wang. 2011. Thermal cracking of waste printed wiring boards for mechanical recycling by using residual steam preprocessing. Front. Environ. Sci. Eng. China 5 (2):167–74. doi:10.1007/s11783-011-0308-4.
  • Cui, J., and E. Forssberg. 2003. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard. Mater. B99:243–63. doi:10.1016/S0304-3894(03)00061-X.
  • Dong, K., X. Peng, J. Zhang, B. Gu, and B. Sun. 2017. Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies. Compos. Struct. 176:319–41. doi:10.1016/j.compstruct.2017.05.036.
  • Du, N., H. Ma, X. Lin, J. Zhang, and C. Liu. 2018. Experimental investigation on the heat transfer characteristics in process of printed circuit boards pyrolysis under nitrogen flow. Sci. Total Environ. 636:1032–39. doi:10.1016/j.scitotenv.2018.04.365.
  • Duan, H. 2010. Recycling of waste printed wiring board subjected to thermal preprocessing and its influencing mechanism. Dissertation for Doctor Degree. Beijing: Tsinghua University (in Chinese).
  • Ghosh, B., P. Parhi, P. S. Mukherjee, and B. K. Mishra. 2015. Waste printed circuit boards recycling: An extensive assessment of current status. J. Clean. Prod. 94:5–19. doi:10.1016/j.jclepro.2015.02.024.
  • Guo, C., H. Wang, W. Liang, J. Fu, and X. Yi. 2011. Liberation characteristic and physical separation of printed circuit board (PCB). Waste Manag. 31:2161–66. doi:10.1016/j.wasman.2011.05.011.
  • Guo, Q., X. Yue, M. Wang, and Y. Liu. 2010. Pyrolysis of scrap printed circuit board plastic particles in a fluidized bed. Powder Technol. 198:422–28. doi:10.1016/j.powtec.2009.12.011.
  • Hadi, P., M. Xu, C. S. K. Lin, C. Hui, and G. Mckay. 2015. Waste printed circuit board recycling techniques and product utilization. J. Hazard. Mater. 283:234–43. doi:10.1016/j.jhazmat.2014.09.032.
  • Han, C., B. Tian, J. Song, and Z. Hou. 2013. Based on the orthogonal design to study the design and optimization of material composition for curing compound. Adv. Mater. Res. 857:124–29. doi:10.4028/www.scientific.net/amr.857.124.
  • Holgersson, S., B. M. Steenari, M. Björkman, and K. Cullbrand. 2018. Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards—Part 1: Internet routers, mobile phones and smartphones. Resour. Conserv. Recycl. 133:300–08. doi:10.1016/j.resconrec.2017.02.011.
  • Kaya, M. 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 57:64–90. doi:10.1016/j.wasman.2016.08.004.
  • Li, H., J. Eksteen, and E. Oraby. 2018. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resour. Conserv. Recycl. 139:122–39. doi:10.1016/j.resconrec.2018.08.007.
  • Li, J., H. Duan, K. Yu, L. Liu, and S. Wang. 2010a. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resour. Conserv. Recycl. 54:810–15. doi:10.1016/j.resconrec.2009.12.011.
  • Li, J., H. Duan, K. Yu, and S. Wang. 2010b. Interfacial and mechanical property analysis of waste printed circuit boards subject to thermal shock. J. Air Waste Manage. Assoc. 60:229–36. doi:10.3155/1047-3289.60.2.229.
  • Li, X., and J. Hao. 2018. Orthogonal test design for optimization of synthesis of super early strength anchoring material. Constr. Build. Mater. 181:42–48. doi:10.1016/j.conbuildmat.2018.06.029.
  • Polansky´, R., V. Mentlı´k, P. Prosr, and J. Susˇı´r. 2009. Influence of thermal treatment on the glass transition temperature of thermosetting epoxy laminate. Polym Test 28:428–36. doi:10.1016/j.polymertesting.2009.03.004.
  • Robinson, B. H. 2009. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 408 (2):183–91. doi:10.1016/j.scitotenv.2009.09.044.
  • Sarvar, M., M. M. Salarirad, and M. A. Shabani. 2015. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods. Waste Manag. 45:246–57. doi:10.1016/j.wasman.2015.06.020.
  • Smith, C. A. 2016. Thermochemical and physical properties of printed circuit board laminates and other polymers used in the electronics industry. Polym Test 52:234–45. doi:10.1016/j.polymertesting.2016.04.017.
  • Sood, B., and M. Pecht. 2018. The effect of epoxy/glass interfaces on CAF failures in printed circuit board. Microelectron. Reliab. 82:235–43. doi:10.1016/j.microrel.2017.10.027.
  • Sottos, N. R., J. M. Ockers, and M. Swindeman. 1999. Thermo elastic properties of plain weave composites for multilayer circuit board applications. J. Electron. Packag. 121 (1):37–43. doi:10.1115/1.2792659.
  • Verma, H. R., K. K. Singh, and S. M. Basha. 2018. Effect of milling parameters on the concentration of copper content of hammer-milled waste PCBs: A case study. J. Sustainable Metall. 4:187–93. doi:10.1007/s40831-018-0179-z.
  • Verma, H. R., K. K. Singh, and T. R. Mankhand. 2017a. Comparative study of printed circuit board recycling by cracking of internal layers using organic solvents-dimethylformamide and dimethylacetamide. J. Clean. Prod. 142:1721–27. doi:10.1016/j.jclepro.2016.11.118.
  • Verma, H. R., K. K. Singh, and T. R. Mankhand. 2017b. Delamination mechanism study of large size waste printed circuit boards by using dimethylacetamide. Waste Manag. 65:139–46. doi:10.1016/j.wasman.2017.04.013.
  • Verma, H. R., K. K. Singh, and T. R. Mankhand. 2017c. Liberation of metal clads of waste printed circuit boards by removal of halogenated epoxy resin substrate using dimethylacetamide. Waste Manag. 60:652–59. doi:10.1016/j.wasman.2016.12.031.
  • Wang, H., S. Zhang, B. Li, D. Pan, Y. Wu, and T. Zuo. 2017. Recovery of waste printed circuit boards through pyro-metallurgical processing: A review. Resour. Conserv. Recycl. 126:209–18. doi:10.1016/j.resconrec.2017.08.001.
  • Wang, L., Q. Li, Y. Li, X. Sun, J. Li, J. Shen, W. Han, and L. Wang. 2018. A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method. Waste Manag. 71:411–19. doi:10.1016/j.wasman.2017.10.002.
  • Wang, L., Z. Wang, S. M. Dong, W. Zhang, and Y. Wang. 2013. Finite element simulation of stress distribution and development of Cf/SiC ceramic–Matrix composite coated with single layer SiC coating during thermal shock. Composites Part B: Eng. 51:204–14. doi:10.1016/j.compositesb.2013.03.028.
  • Wath, S. B., M. N. Katariya, S. K. Singh, G. S. Kanade, and A. N. Vaidya. 2015. Separation of WPCBs by dissolution of brominated epoxy resins using DMSO and NMP: A comparative study. Chem. Eng. J. 280:391–98. doi:10.1016/j.cej.2015.06.007.
  • Xiu, F., Y. Li, Y. Qi, X. Yu, J. He, Y. Lu, X. Gao, Y. Deng, and Z. Song. 2019. A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: Debromination and preparation of nitrogen-containing fine chemicals. Waste Manag. 84:355–63. doi:10.1016/j.wasman.2018.12.010.
  • Xiu, F., Y. Qi, S. Wang, W. Nie, H. Weng, and M. Chen. 2018. Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination. J. Hazard. Mater. 344:333–42. doi:10.1016/j.jhazmat.2017.10.033.
  • Xiu, F., H. Weng, Y. Qi, G. Yu, Z. Zhang, F. Zhang, and M. Chen. 2017. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials. Waste Manag. 60:643–51. doi:10.1016/j.wasman.2016.11.001.
  • Zeng, X., J. Li, H. Xie, and L. Liu. 2013. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid. Chemosphere 93:1288–94. doi:10.1016/j.chemosphere.2013.06.063.
  • Zhang, G., H. Wang, Y. He, X. Yang, Z. Peng, T. Zhang, and S. Wang. 2017. Triboelectric separation technology for removing inorganics from non-metallic fraction of waste printed circuit boards: Influence of size fraction and process optimization. Waste Manag. 60:42–49. doi:10.1016/j.wasman.2016.08.010.
  • Zhang, S., and E. Forssberg. 1997. Mechanical separation-oriented characterization of electronic scrap. Resour. Conserv. Recycl. 21 (4):247–69. doi:10.1016/S0921-3449(97)00039-6.
  • Zhao, C., X. Zhang, and L. Shi. 2017. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR. Waste Manag. 61:354–61. doi:10.1016/j.wasman.2016.12.019.
  • Zhou, C., Y. Pan, M. Lu, and C. Yang. 2016. Liberation characteristics after cryogenic modification and air table separation of discarded printed circuit boards. J. Hazard. Mater. 311:203–09. doi:10.1016/j.jhazmat.2016.03.008.
  • Zhu, P., Y. Chen, L. Wang, G. Qian, W. Zhang, M. Zhou, and J. Zhou. 2013b. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards. Environ. Sci. Technol. 47 (6):2654–60. doi:10.1021/es303264c.
  • Zhu, P., Y. Chen, L. Wang, G. Qian, M. Zhou, and J. Zhou. 2013a. A novel approach to separation of waste printed circuit boards using dimethyl sulfoxide. Int. J. Environ. Sci. Technol. 10 (1):175–80. doi:10.1007/s13762-012-0124-9.
  • Zhu, Q., P. Shrotriya, N. R. Sottos, and P. H. Geubelle. 2003. Three-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards. Compos. Sci. Technol. 63 (13):1971–83. doi:10.1016/s0266-3538(03)00171-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.