738
Views
11
CrossRef citations to date
0
Altmetric
A special grouping of select papers presented at the international conference, “Sustainable technologies for industrial hazardous waste management and bioenergy production,” Chennai, India

A comparative study on the chemo-enzymatic upgrading of renewable biomass to 5-Hydroxymethylfurfural

, , , , , , & show all
Pages 1218-1226 | Received 02 Nov 2019, Accepted 16 Jan 2020, Published online: 07 Dec 2020

References

  • Atanda, L., M. Konarova, Q. Ma, S. Mukundan, A. Shrotri, and J. Beltramini. 2016. High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catal. Sci. Technol. 6:6257–66. doi:10.1039/C6CY00820H.
  • Balcázar-López, E., L. H. Méndez-Lorenzo, R. A. Batista-García, U. Esquivel-Naranjo, M. Ayala, V. V. Kumar, O. Savary, H. Cabana, A. Herrera-Estrella, and J. L. Folch-Mallol. 2016. Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS One 11:e0147997. doi:10.1371/journal.pone.0147997.
  • Batista-García, R. A., T. Sutton, S. A. Jackson, O. E. Tovar-Herrera, E. Balcázar-López, M. del Rayo Sanchez-Carbente, A. Sánchez-Reyes, A. D. W. Dobson, and J. L. Folch-Mallol. 2017. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 12 (3):e0173750. doi:10.1371/journal.pone.0173750.
  • Carniti, P., A. Gervasini, and M. Marzo. 2011. Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catal. Comm. 12:1122–26. doi:10.1016/j.catcom.2011.03.025.
  • Chheda, J. N., Y. Román-Leshkov, and J. A. Dumesic. 2007. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chem. 9:342–50. doi:10.1039/B611568C.
  • Coward‐Kelly, G., C. Aiello‐Mazzari, S. Kim, C. Granda, and M. Holtzapple. 2003. Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol. Bioeng. 82:745–49. doi:10.1002/bit.10620.
  • Dessbesell, L., S. Souzanchi, K. T. Venkateswara Rao, A. A. Carrillo, D. Bekker, K. A. Hall, K. M. Lawrence, C. L. J. Tait, and C. Xu. 2019. Production of 2, 5‐furandicarboxylic acid (FDCA) from starch, glucose, or high‐fructose corn syrup: Techno‐economic analysis. Biofuels. Bioprod. Bior. 13:1234–45. doi:10.1002/bbb.2014.
  • Ghose, T. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59:257–68. doi:10.1351/pac198759020257.
  • Girisuta, B., L. Janssen, and H. Heeres. 2006. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem. 8:701–09. doi:10.1039/b518176c.
  • Hartig, D., J. Kluitmann, and S. Scholl. 2019. An expanded Markham and Benton approach to describe multi-component adsorption of sugars on zeolite beta. Microporous Mesoporous Mater. 273:171–76. doi:10.1016/j.micromeso.2018.07.009.
  • Hu, R., L. Lin, T. Liu, P. Ouyang, B. He, and S. Liu. 2008. Reducing sugar content in hemicellulose hydrolysate by DNS method: A revisit. J. Biobased Mater. Bio. 2:156–61. doi:10.1166/jbmb.2008.306.
  • Jeong, J., C. A. Antonyraj, S. Shin, S. Kim, B. Kim, K.-Y. Lee, and J. K. Cho. 2013. Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup. J. Ind. Eng. Chem. 19:1106–11. doi:10.1016/j.jiec.2012.12.004.
  • Klibanov, A. M. 1997. Why are enzymes less active in organic solvents than in water? Trends Ibiotechnol. 15:97–101. doi:10.1016/S0167-7799(97)01013-5.
  • Lee, T. P., R. Sakai, N. A. Manaf, A. M. Rodhi, and B. Saad. 2014. High performance liquid chromatography method for the determination of patulin and 5-hydroxymethylfurfural in fruit juices marketed in Malaysia. Food Control 38:142–49. doi:10.1016/j.foodcont.2013.10.018.
  • Lee, Y. H., and L. T. Fan. 1982. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Analysis of the initial rates. Biotechnol. Bioeng. 24:2383–406. doi:10.1002/bit.260241107.
  • Li, W., T. Zhang, H. Xin, M. Su, L. Ma, H. Jameel, G. Pei, and G. Pei. 2017. p-Hydroxybenzenesulfonic acid–formaldehyde solid acid resin for the conversion of fructose and glucose to 5-hydroxymethylfurfural. RSC Adv. 7:27682–88. doi:10.1039/C7RA03155F.
  • Liu, R., J. Chen, X. Huang, L. Chen, L. Ma, and X. Li. 2013. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem. 15:2895–903. doi:10.1039/c3gc41139g.
  • Lu, Y., and N. S. Mosier. 2008. Kinetic modeling analysis of maleic acid‐catalyzed hemicellulose hydrolysis in corn stover. Biotechnol. Bioeng. 101:1170–81. doi:10.1002/bit.22008.
  • Mohammadi, M., R. R. Mokarram, M. Ghorbani, and H. Hamishehkar. 2019. Inulinase immobilized gold-magnetic nanoparticles as a magnetically recyclable biocatalyst for facial and efficient inulin biotransformation to high fructose syrup. Int. J. Biol. Macromol. 123:846–55. doi:10.1016/j.ijbiomac.2018.11.160.
  • Nicodemus, A. 2009. Casuarina–A guide for cultivation. India: Institute of Forest Genetics and Tree Breeding (Indian Council of Forestry Research and Education) Coimbatore.
  • Ortega, Z., J. Castellano, L. Suárez, R. Paz, N. Díaz, A. N. Benítez, and M. D. Marrero. 2019. Characterization of Agave americana L. plant as potential source of fibres for composites obtaining. SN Appl. Sci. 1:987. doi:10.1007/s42452-019-1022-2.
  • Paripoorani, K. S., G. Ashwin, P. Vengatapriya, V. Ranjitha, S. Rupasree, V. V. Kumar, and V. V. Kumar. 2015. Insolubilization of inulinase on magnetite chitosan microparticles, an easily recoverable and reusable support. J. Mol. Catal. B. 113:47–55. doi:10.1016/j.molcatb.2015.01.004.
  • Ricca, E., V. Calabrò, S. Curcio, and G. Iorio. 2007. The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit. Rev. Biotechnol. 27:129–45. doi:10.1080/07388550701503477.
  • Sharma, H. K., C. Xu, and W. Qin. 2019. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview. Waste Biomass Valori. 10:235–51.
  • Singh, R. S., K. Chauhan, A. Pandey, C. Larroche, and J. F. Kennedy. 2018. Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. Int. J. Biol. Macromol. 118:1974–83. doi:10.1016/j.ijbiomac.2018.07.040.
  • Singh, R. S., K. Chauhan, and J. F. Kennedy. 2019. Fructose production from inulin using fungal inulinase immobilized on 3-aminopropyl-triethoxysilane functionalized multiwalled carbon nanotubes. Int. J. Biol. Macromol. 125:41–52. doi:10.1016/j.ijbiomac.2018.11.281.
  • Van Putten, R.-J., J. C. Van Der Waal, E. De Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries. 2013. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113:1499–597. doi:10.1021/cr300182k.
  • Vandana, J., K. R. S. Aishvarya, V. Novi, S. Ramachandran, H. Radhakrishnan, and V. V. Kumar. 2017. Mesoporous titanium dioxide nanocatalyst: A recyclable approach for one-pot synthesis of 5-hydroxymethylfurfural. IET Nanobiotechnol. 11:690–94. doi:10.1049/iet-nbt.2016.0216.
  • Vinoth Kumar, V., M. P. Premkumar, K. V. Thiruvenkadaravi, P. Baskaralingam, P. Senthil Kumar, and S. Sivanesan. 2012. Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes. Bioresour. Technol. 119:28–34. doi:10.1016/j.biortech.2012.05.078.
  • Vinoth Kumar, V., M. P. Premkumar, S. Dineshkirupha, J. Nandagopal, and S. Sivanesan. 2011. Aspergillus niger exo‐inulinase purification by three phase partitioning. Eng. Life Sci. 11:607–14. doi:10.1002/elsc.201000180.
  • Vishnu, D., G. Neeraj, R. Swaroopini, R. Shobana, V. V. Kumar, and H. Cabana. 2017. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pol. Res. 24:17993–8009. doi:10.1007/s11356-017-9318-5.
  • Wang, P., H. Yu, S. Zhan, and S. Wang. 2011. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresour. Technol. 102:4179–83. doi:10.1016/j.biortech.2010.12.073.
  • Wang, S., Z. Zhang, B. Liu, and J. Li. 2013. Silica coated magnetic Fe 3 O 4 nanoparticles supported phosphotungstic acid: A novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol. 3:2104–12. doi:10.1039/c3cy00223c.
  • Watanabe, M., Y. Aizawa, T. Iida, R. Nishimura, and H. Inomata. 2005. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: Relationship between reactivity and acid–base property determined by TPD measurement. Appl. Catal. A. 295:150–56. doi:10.1016/j.apcata.2005.08.007.
  • Xu, Z., Q. Wang, Z. Jiang, X.-X. Yang, and Y. Ji. 2007. Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenerg. 31:162–67. doi:10.1016/j.biombioe.2006.06.015.
  • Xu, Z., Q. Wang, Z. Jiang, X.-X. Yang, and Y. Ji. 2007.
  • Xu, S., C. Yin, D. Pan, F. Hu, Y. Wu, Y. Miao, L. Gao, and C. Xiao. 2019. Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe 3+ modified Amberlyst-15 catalyst. Sustain. Energ. Fuel. 3 (2):390–95.
  • Yang, B., Z. Dai, S. Y. Ding, and C. E. Wyman. 2011. Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–49. doi:10.4155/bfs.11.116.
  • Zhang, Y., J. Wang, J. Ren, X. Liu, X. Li, Y. Xia, Y. Wang, and Y. Wang. 2012. Mesoporous niobium phosphate: An excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catal. Sci. Technol. 212:2485–91. doi:10.1039/c2cy20204b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.