1,159
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Comparisons of forward-in-time and backward-in-time Lagrangian stochastic dispersion models for micro-scale atmospheric dispersion

& ORCID Icon
Pages 425-435 | Received 04 Jul 2019, Accepted 05 Feb 2020, Published online: 26 Feb 2020

References

  • Batchelder, H. 2006. Forward-in-time-/backward-in-time-trajectory (fitt/bitt) modeling of particles and organisms in the coastal ocean. J. Atmos. Oceanic Technol. 23 (5):727–41. doi:10.1175/JTECH1874.1.
  • Bieringer, P. E., G. S. Young, L. M. Rodriguez, A. J. Annunzio, F. Vandenberghe, and S. E. Haupt. 2017. Paradigms and commonalities in atmospheric source term estimation methods. Atmos. Environ. 156:102–12. doi:10.1016/j.atmosenv.2017.02.011.
  • Cai, X., G. Peng, X. Guo, and M. Y. Leclerc. 2008. Evaluation of backward and forward Lagrangian footprint models in the surface layer. Theor. Appl. Climatol. 93:207–23. doi:10.1007/s00704-007-0334-0.
  • Draxler, R. R. 2006. The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington, DC. Weather Forecast 21 (3):383–94. doi:10.1175/WAF926.1.
  • Eckhardt, S., M. Cassiani, N. Evangeliou, E. Sollum, I. Pisso, and A. Stohl. 2017. Source–receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode. Geosci. Model Dev. 10:4605–18. doi:10.5194/gmd-10-4605-2017.
  • Flesch, T. K., J. D. Wilson, and E. Yee. 1995. Backward-time lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J. Appl. Meteorol. 34:1320–32. doi:10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2.
  • Flesch, T. K., J. D. Wilson, L. A. Harper, B. P. Crenna, and R. R. Sharpe. 2004. Deducing ground-to-air emissions from bbserved trace gas concentrations: A field trial. J. Appl.Meteorol. 43:487–502. doi:10.1175/1520-0450(2004)043<0487:DGEFOT>2.0.CO;2.
  • Flesch, T. K., V. S. Baron, J. D. Wilson, D. W. T. Griffith, J. A. Basarab, and P. J. Carlson. 2016. Agricultural gas emissions during the spring thaw: Applying a new measurement technique. Agric. Forest Meteorol. 221:111–21. doi:10.1016/j.agrformet.2016.02.010.
  • Gao, Z., R. L. Desjardins, and T. L. Flesch. 2009. Comparison of a simplified micrometeorological mass difference technique and an inverse dispersion technique for estimating methane emissions from small area sources. Agric. For. Meteorol. 149:891–98. doi:10.1016/j.agrformet.2008.11.005.
  • Gifford, F. A. 1959. Computation of pollution from several sources. Int. J. Air Poll. 2:109–10.
  • Goodrick, S. L., G. L. Achtemeier, N. K. Larkin, Y. Liu, and T. M. Strand. 2013. Modelling smoke transport from wildland fires: A review. Int. J. Wildland Fire 22:83–94. doi:10.1071/WF11116.
  • Harper, L. A., T. K. Flesch, J. M. Powell, W. K. Coblentz, W. E. Jokela, and N. P. Martin. 2009. Ammonia emissions from dairy production in Wisconsin. J. Dairy Sci. 92:2326–37. doi:10.3168/jds.2008-1753.
  • Hegarty, J., R. R. Draxler, A. F. Stein, J. Brioude, M. Mountain, J. Eluszkiewicz, T. Nehrkorn, F. Ngan, and A. Andrews. 2013. Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases. J. Appl. Meteorol. Climatol. 52 (12):2623–37. doi:10.1175/JAMC-D-13-0125.1.
  • Kljn, N., P. Kastner-Klein, E. Fedorovich, and N. W. Rotach. 2004. Evaluation of Lagrangian footprint model using data from wind tunnel convective boundary layer. Agric. Forest Meteorol. 127:189–201. doi:10.1016/j.agrformet.2004.07.013.
  • Kljun, N., N. W. Rotach, and H. P. Schmid. 2002. A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications. Boundary-Layer Meteorol. 103:205–26. doi:10.1023/A:1014556300021.
  • Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J. Davis, and C. A. Grainger. 2003. A A near‐field  tool for simulating the upstream influence of atmospheric observations: The Stochastic Time‐Inverted  Lagrangian Transport (STILT) model.J. Geophys. Res. 108 (D16):4493. doi:10.1029/2002JD003161.
  • Lin, J. C., D. Brunner, and C. Gerbig. 2011. Studying atmospheric transport through Lagrangian models. Eos Trans. AGU. 92 (21):177. doi:10.1029/2011EO210001.
  • McGinn, S. M., T. K. Flesch, B. P. Crenna, K. A. Beauchemin, and T. Coates. 2007. Quantifying ammonia emissions from a cattle feedlot using a dispersion model. J. Environ. Qual. 36:1585–90. doi:10.2134/jeq2007.0167.
  • Riddick, S. N., S. Connors, A. D. Robinson, A. J. Manning, P. S. D. Jones, D. Lowry, E. Nisbet, R. L. Skelton, G. Allen, J. Pitt, et al. 2016. Estimating the size of a methane emission point-source at different scales: From local to landscape. Atmos. Chem. Phys. 17:7839–51. doi:10.5194/acp-17-7839-2017.
  • Rodean, H. 1996. Stochastic Lagrangian models of turbulent diffusion. Meteor. Mon. 48:1–84. doi:10.1175/0065-9401-26.48.1.
  • Schmid, H. P. 2002. Footprint modeling for vegetation atmosphere exchange studies: A review and perspective. Agric. Forest Meteorol. 113:159–83. doi:10.1016/S0168-1923(02)00107-7.
  • Seibert, P., and A. Frank. 2004. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 4:51–63. doi:10.5194/acp-4-51-2004.
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa. 2005. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 5:2461–74. doi:10.5194/acp-5-2461-2005.
  • Thomson, D. J. 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180:529–56. doi:10.1017/S0022112087001940.
  • Thomson, D. J., and J. D. Wilson. 2012. History of the Lagrangian stochastic model for turbulent dispersion. Lagrangian Model. Atmos. American Geophys. Union 200:19–36.
  • Wilson, J. D., and T. K. Flesch. 1993. Flow boundaries in random flight dispersion models: Enforcing the well-mixed condition. J. Appl. Meteor. 32:1695–707. doi:10.1175/1520-0450(1993)032<1695:FBIRFD>2.0.CO;2.
  • Wilson, J. D., T. K. Flesch, and L. A. Harper. 2001. Micro-meteorological methods for estimating surface exchange with a disturbed windflow. Agric. Forest Meteorol. 107:207–25. doi:10.1016/S0168-1923(00)00238-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.