2,249
Views
19
CrossRef citations to date
0
Altmetric
Technical Paper

Effects of biochar addition on the anaerobic digestion of carbohydrate-rich, protein-rich, and lipid-rich substrates

, , & ORCID Icon
Pages 455-467 | Received 10 Sep 2019, Accepted 17 Feb 2020, Published online: 10 Mar 2020

References

  • Algapani, D. E., W. Qiao, F. di Pumpo, D. Bianchi, S. M. Wandera, F. Adani, and R. Dong. 2018. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways. Bioresour. Technol. 248:204–13. doi:10.1016/j.biortech.2017.05.164.
  • Alibardi, L., and R. Cossu. 2016. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manage. 47:69–77. doi:10.1016/j.wasman.2015.07.049.
  • Alves, M. M., M. A. Pereira, D. Z. Sousa, A. J. Cavaleiro, M. Picavet, H. Smidt, and A. J. M. Stams. 2009. Waste lipids to energy: How to optimize methane production from long-chain fatty acids (LCFA). Microb. Biotechnol. 2:538–50. doi:10.1111/j.1751-7915.2009.00100.x.
  • Amani, T., M. Nosrati, S. M. Mousavi, and R. K. Kermanshahi. 2011. Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int. J. Environ. Sci. Technol. 8:83–96. doi:10.1007/BF03326198.
  • Cardinali-Rezende, J., L. F. D. B. Colturato, T. D. B. Colturato, E. Chartone-Souza, A. M. A. Nascimento, and J. L. Sanz. 2012. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour. Technol. 119:373–83. doi:10.1016/j.biortech.2012.05.136.
  • Chen, Y., J. J. Cheng, and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99:4044–64. doi:10.1016/j.biortech.2007.01.057.
  • China State Bureau of Quality and Technical Supervision. 1999. Wood charcoal and test method of wood charcoal. Beijing, China: Chinese National Standard.
  • Cuetos, M. J., E. J. Martinez, R. Moreno, R. Gonzalez, M. Otero, and X. Gomez. 2017. Enhancing anaerobic digestion of poultry blood using activated carbon. J. Adv. Res. 8:297–307. doi:10.1016/j.jare.2016.12.004.
  • Dai, X., H. Yan, N. Li, J. He, Y. Ding, L. Dai, and B. Dong. 2016. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge. Sci. Rep. 6:28193. doi:10.1038/srep28193.
  • Fagbohungbe, M. O., B. M. J. Herbert, L. Hurst, H. Li, S. Q. Usmani, and K. T. Semple. 2016. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour. Technol. 216:142–49. doi:10.1016/j.biortech.2016.04.106.
  • Hu, Q., D. Sun, Y. Ma, B. Qiu, and Z. Guo. 2017. Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. Polymer 120:236–43. doi:10.1016/j.polymer.2017.05.073.
  • Kizito, S., S. Wu, W. Kipkemoi Kirui, M. Lei, Q. Lu, H. Bah, and R. Dong. 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 505:102–12. doi:10.1016/j.scitotenv.2014.09.096.
  • Ko, J. H., J. Wang, and Q. Xu. 2018a. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis. Chemosphere 208:108–16. doi:10.1016/j.chemosphere.2018.05.120.
  • Ko, J. H., N. Wang, T. Yuan, F. Lü, P. He, and Q. Xu. 2018b. Effect of nickel-containing activated carbon on food waste anaerobic digestion. Bioresour. Technol. 266:516–23. doi:10.1016/j.biortech.2018.07.015.
  • Kobayashi, T., K.-Q. Xu, -Y.-Y. Li, and Y. Inamori. 2012. Evaluation of hydrogen and methane production from municipal solid wastes with different compositions of fat, protein, cellulosic materials and the other carbohydrates. Int. J. Hydrogen Energy 37:15711–18. doi:10.1016/j.ijhydene.2012.05.044.
  • Kurade, M. B., S. Saha, E.-S. Salama, S. M. Patil, S. P. Govindwar, and B.-H. Jeon. 2019. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 272:351–59. doi:10.1016/j.biortech.2018.10.047.
  • Lü, F., C. Luo, L. Shao, and P. He. 2016. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 90:34–43. doi:10.1016/j.watres.2015.12.029.
  • Lahav, O., and B. Morgan. 2004. Titration methodologies for monitoring of anaerobic digestion in developing countries—a review. J. Chem. Technol. Biotechnol. 79:1331–41. doi:10.1002/jctb.1143.
  • Lee, D. H., S. K. Behera, J. W. Kim, and H.-S. Park. 2009. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manage. 29:876–82. doi:10.1016/j.wasman.2008.06.033.
  • Lei, Y., D. Sun, Y. Dang, H. Chen, Z. Zhao, Y. Zhang, and D. E. Holmes. 2016. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth. Bioresour. Technol. 222:270–76. doi:10.1016/j.biortech.2016.10.007.
  • Lesteur, M., V. Bellon-Maurel, C. Gonzalez, E. Latrille, J. M. Roger, G. Junqua, and J. P. Steyer. 2010. Alternative methods for determining anaerobic biodegradability: A review. Process Biochem. 45:431–40. doi:10.1016/j.procbio.2009.11.018.
  • Li, S., C. Liang, and Z. Shangguan. 2017. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Sci. Total Environ. 607-608:109–19. doi:10.1016/j.scitotenv.2017.06.275.
  • Li, Y., Y. Sun, L. Li, and Z. Yuan. 2018. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. Bioresour. Technol. 250:117–23. doi:10.1016/j.biortech.2017.11.034.
  • Liu, H., J. Wang, X. Liu, B. Fu, J. Chen, and H.-Q. Yu. 2012. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res. 46:799–807. doi:10.1016/j.watres.2011.11.047.
  • Luo, C., F. Lü, L. Shao, and P. He. 2015. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 68:710–18. doi:10.1016/j.watres.2014.10.052.
  • Ma, J., J. Pan, L. Qiu, Q. Wang, and Z. Zhang. 2019. Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion. Bioresour. Technol. 293:122026. doi:10.1016/j.biortech.2019.122026.
  • Martínez, E. J., J. G. Rosas, A. Sotres, A. Moran, J. Cara, M. E. Sánchez, and X. Gómez. 2018. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem. Eng. J. 137:314–25. doi:10.1016/j.bej.2018.06.010.
  • Masebinu, S. O., E. T. Akinlabi, E. Muzenda, and A. O. Aboyade. 2019. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable Sustainable Energy Rev. 103:291–307. doi:10.1016/j.rser.2018.12.048.
  • Mendes, A. A., E. B. Pereira, and H. F. de Castro. 2006. Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem. Eng. J. 32:185–90. doi:10.1016/j.bej.2006.09.021.
  • Mumme, J., F. Srocke, K. Heeg, and M. Werner. 2014. Use of biochars in anaerobic digestion. Bioresour. Technol. 164:189–97. doi:10.1016/j.biortech.2014.05.008.
  • Palatsi, J., J. Illa, F. X. Prenafeta-Boldú, M. Laureni, B. Fernandez, I. Angelidaki, and X. Flotats. 2010. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling. Bioresour. Technol. 101:2243–51. doi:10.1016/j.biortech.2009.11.069.
  • Pan, J., J. Ma, L. Zhai, T. Luo, Z. Mei, and H. Liu. 2019. Achievements of biochar application for enhanced anaerobic digestion: A review. Bioresour. Technol. 292:122058. doi:10.1016/j.biortech.2019.122058.
  • Paritosh, K., S. K. Kushwaha, M. Yadav, N. Pareek, A. Chawade, and V. Vivekanand. 2017. Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. Biomed. Res. Int. 2017:2370927–2370927. doi:10.1155/2017/2370927.
  • Qin, Y., H. Wang, X. Li, J. J. Cheng, and W. Wu. 2017. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar. Bioresour. Technol. 245:1058–66. doi:10.1016/j.biortech.2017.09.047.
  • Raposo, F., V. Fernández-Cegrí, M. A. De la Rubia, R. Borja, F. Béline, C. Cavinato, G. Demirer, B. Fernández, M. Fernández-Polanco, J. C. Frigon, et al. 2011. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86:1088–98. doi:10.1002/jctb.2622.
  • Rasit, N., A. Idris, R. Harun, and W. A. Wan Ab Karim Ghani. 2015. Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview. Renewable Sustainable Energy Rev. 45:351–58. doi:10.1016/j.rser.2015.01.066.
  • Rotaru, A.-E., P. M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K. P. Nevin, and D. R. Lovley. 2014. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7:408–15. doi:10.1039/C3EE42189A.
  • Sheets, J. P., L. Yang, X. Ge, Z. Wang, and Y. Li. 2015. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manage. 44:94–115. doi:10.1016/j.wasman.2015.07.037.
  • Shen, Y., J. L. Linville, P. A. A. Ignacio-de Leon, R. P. Schoene, and M. Urgun-Demirtas. 2016. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod. 135:1054–64. doi:10.1016/j.jclepro.2016.06.144.
  • Shrestha, P. M., and A.-E. Rotaru. 2014. Plugging in or going wireless: Strategies for interspecies electron transfer. Front. Microbiol. 5: doi: 10.3389/fmicb.2014.00237.
  • Sousa, D. Z., H. Smidt, M. M. Alves, and A. J. M. Stams. 2009. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol. Ecol. 68:257–72. doi:10.1111/j.1574-6941.2009.00680.x.
  • Sun, Y., D. Wang, J. Yan, W. Qiao, W. Wang, and T. Zhu. 2014. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Manage. 34:1025–34. doi:10.1016/j.wasman.2013.07.018.
  • U.S. Department of Agriculture, Agricultural Research Service. 2019. Accessed March 1, 2019. https://ndb.nal.usda.gov/
  • Wan, C., Q. Zhou, G. Fu, and Y. Li. 2011. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manage. 31:1752–58. doi:10.1016/j.wasman.2011.03.025.
  • Wang, C., Y. Liu, X. Gao, H. Chen, X. Xu, and L. Zhu. 2018. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresour. Technol. 268:28–35. doi:10.1016/j.biortech.2018.07.116.
  • Wang, G., Q. Li, Y. Li, Y. Xing, G. Yao, Y. Liu, R. Chen, and X. C. Wang. 2020. Redox-active biochar facilitates potential electron tranfer between syntrophic partners to enhance anaerobic digestion under high organic loading rate. Bioresour. Technol. 298:122524. doi:10.1016/j.biortech.2019.122524.
  • Wu, Y., S. Wang, D. Liang, and N. Li. 2020. Conductive materials in anaerobic digestion: From mechanism to application. Bioresour. Technol. 298:122403. doi:10.1016/j.biortech.2019.122403.
  • Xu, Z., M. Zhao, H. Miao, Z. Huang, S. Gao, and W. Ruan. 2014. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresour. Technol. 163:186–92. doi:10.1016/j.biortech.2014.04.037.
  • Yang, Y., Y. Zhang, Z. Li, Z. Zhao, X. Quan, and Z. Zhao. 2017. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. J. Clean. Prod. 149:1101–08. doi:10.1016/j.jclepro.2017.02.156.
  • Ye, M., J. Liu, C. Ma, -Y.-Y. Li, L. Zou, G. Qian, and Z. P. Xu. 2018. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review. J. Clean. Prod. 192:316–26. doi:10.1016/j.jclepro.2018.04.244.
  • Yuan, H., and N. Zhu. 2016. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable Sustainable Energy Rev. 58:429–38. doi:10.1016/j.rser.2015.12.261.
  • Zhang, C., H. Su, J. Baeyens, and T. Tan. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable Sustainable Energy Rev. 38:383–92. doi:10.1016/j.rser.2014.05.038.
  • Zhang, J., W. Zhao, H. Zhang, Z. Wang, C. Fan, and L. Zang. 2018. Recent achievements in enhancing anaerobic digestion with carbon- based functional materials. Bioresour. Technol. 266:555–67. doi:10.1016/j.biortech.2018.07.076.
  • Zhang, J., and Y. Lu. 2016. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments. Front. Microbiol. 7: doi: 10.3389/fmicb.2016.01316.
  • Zhao, Z., Y. Zhang, D. E. Holmes, Y. Dang, T. L. Woodard, K. P. Nevin, and D. R. Lovley. 2016. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour. Technol. 209:148–56. doi:10.1016/j.biortech.2016.03.005.
  • Zou, H., Y. Chen, J. Shi, T. Zhao, Q. Yu, S. Yu, D. Shi, H. Chai, L. Gu, Q. He, et al. 2018. Mesophilic anaerobic co-digestion of residual sludge with different lignocellulosic wastes in the batch digester. Bioresour. Technol. 268:371–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.