1,183
Views
10
CrossRef citations to date
0
Altmetric
Technical Paper

Comprehending adsorption of methylethylketone and toluene and microwave regeneration effectiveness for beaded activated carbon derived from recycled waste bamboo tar

, , , & ORCID Icon
Pages 616-628 | Received 17 Oct 2019, Accepted 05 Mar 2020, Published online: 04 Jun 2020

References

  • Cal, M. P., M. J. Rood, and S. M. Larson. 1997. Gas phase adsorption of volatile organic compounds and water vapor on activated carbon cloth. Energy Fuels 11 (2):311–15. doi:10.1021/ef960200p.
  • Chen, Y. T., Y. P. Huang, and H. C. Hsi. 2019. Valorizing waste bamboo tar to novel bead carbonaceous adsorbent for volatile organic compound removal. J. Environ. Eng.-ASCE 145 (12):04019088. doi:10.1061/(ASCE)EE.1943-7870.0001609.
  • Cheng, S., Q. Chen, H. Y. Xia, L. B. Zhang, J. H. Peng, G. Lin, X. F. Liao, X. Jiang, and Q. Zhang. 2018. Microwave one-pot production of ZnO/Fe3O4/activated carbon composite for organic dye removal and the pyrolysis exhaust recycle. J. Clean Prod. 188:900–10. doi:10.1016/j.jclepro.2018.03.308.
  • Cheng, S., L. B. Zhang, H. Y. Xia, J. H. Peng, J. H. Shu, C. Y. Li, X. Jiang, and Q. Zhang. 2017. Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling. RSC Adv. 7 (44):27331–41. doi:10.1039/C7RA01482A.
  • Cherbanski, R., M. Komorowska-Durka, G. D. Stefanidis, and A. I. Stankiewicz. 2011. Microwave swing regeneration vs temperature swing regeneration-comparison of desorption kinetics. Ind. Eng. Chem. Res. 50 (14):8632–44. doi:10.1021/ie102490v.
  • Cherbanski, R., and E. Molga. 2009. Intensification of desorption processes by use of microwaves-An overview of possible applications and industrial perspectives. Chem. Eng. Process 48 (1):48–58. doi:10.1016/j.cep.2008.01.004.
  • Chiang, Y. C., P. C. Chiang, and C. P. Huang. 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39 (4):523–34. doi:10.1016/S0008-6223(00)00161-5.
  • Do, D. D. 1998. Adsorption analysis: Equilibria and kinetics. London, UK: Imperial College Press.
  • Dubinin, M. M. 1989. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 27 (3):457–67. doi:10.1016/0008-6223(89)90078-X.
  • Foo, K. Y., and B. H. Hameed. 2012. Microwave-assisted regeneration of activated carbon. Bioresour. Technol. 119:234–40. doi:10.1016/j.biortech.2012.05.061.
  • Foo, K. Y., L. K. Lee, and B. H. Hameed. 2013. Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. Chem. Eng. J. 223:604–10. doi:10.1016/j.cej.2013.03.009.
  • Ghafari, M., and J. D. Atkinson. 2018. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance. J. Hazard. Mater. 351:117–23. doi:10.1016/j.jhazmat.2018.02.051.
  • Ghoshal, A. K., and S. D. Manjare. 2002. Selection of appropriate adsorption technique for recovery of VOCs: An analysis. J. Loss Prev. Process Ind. 15 (6):413–21. doi:10.1016/S0950-4230(02)00042-6.
  • Hashisho, Z., M. J. Rood, and L. Botich. 2005. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth. Environ. Sci. Technol. 39 (17):6851–59. doi:10.1021/es050338z.
  • Hsi, H. C., R. S. Horng, T. A. Pan, and S. K. Lee. 2011. Preparation of activated carbons from raw and biotreated agricultural residues for removal of volatile organic compounds. J. Air Waste Manag. Assoc. 61 (5):543–51. doi:10.3155/1047-3289.61.5.543.
  • Huang, Y. P., H. C. Hsi, and S. C. Liu. 2013. Preparation of spherical activated phenol-formaldehyde beads from bamboo tar for adsorption of toluene. J. Air Waste Manag. Assoc. 63 (8):977–83. doi:10.1080/10962247.2013.804011.
  • Johnsen, D. L., H. Emamipour, J. S. Guest, and M. J. Rood. 2016. Environmental and economic assessment of electrothermal swing adsorption of air emissions from sheet-foam production compared to conventional abatement techniques. Environ. Sci. Technol. 50 (3):1465–72. doi:10.1021/acs.est.5b05004.
  • Kamal, M. S., S. A. Razzak, and M. M. Hossain. 2016. Catalytic oxidation of volatile organic compounds (VOCs) - A review. Atmos. Environ. 140:117–34. doi:10.1016/j.atmosenv.2016.05.031.
  • Kamravaei, S., P. Shariaty, M. J. Lashaki, J. D. Atkinson, Z. Hashisho, J. H. Phillips, J. E. Anderson, and M. Nichols. 2017. Effect of beaded activated carbon fluidization on adsorption of volatile organic compounds. Ind. Eng. Chem. Res. 56 (5):1297–305. doi:10.1021/acs.iecr.6b04165.
  • Kim, K. J., and H. G. Ahn. 2010. The adsorption and desorption characteristics of a binary component system of toluene and methylethylketone on activated carbon modified with phosphoric acid. Carbon 48 (8):2198–202. doi:10.1016/j.carbon.2010.02.021.
  • Kim, M. I., C. H. Yun, Y. J. Kim, C. R. Park, and M. Inagaki. 2002. Changes in pore properties of phenol formaldehyde-based carbon with carbonization and oxidation conditions. Carbon 40 (11):2003–12. doi:10.1016/S0008-6223(02)00058-1.
  • Kim, Y. J., M. I. I. Kim, C. H. Yun, J. Y. Chang, C. R. Park, and M. Inagaki. 2004. Comparative study of carbon dioxide and nitrogen atmospheric effects on the chemical structure changes during pyrolysis of phenol-formaldehyde spheres. J. Colloid Interface Sci. 274 (2):555–62. doi:10.1016/j.jcis.2003.12.029.
  • Lashaki, M. J., M. Fayaz, S. Niknaddaf, and Z. Hashisho. 2012. Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon. J. Hazard. Mater. 241-242:154–63. doi:10.1016/j.jhazmat.2012.09.024.
  • Lee, W. J., C. Y. Yu, K. C. Chang, Y. P. Huang, C. H. Chang, and C. T. Liu. 2011. Spherical PF resin beads prepared from phenol-liquefied Bambusa dolichoclada with suspension polymerization. Holzforsch 65 (2):163–69. doi:10.1515/hf.2010.120.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367. doi:10.1038/nature15371.
  • Li, L. Q., Z. Sun, H. L. Li, and T. C. Keener. 2012. Effects of activated carbon surface properties on the adsorption of volatile organic compounds. J. Air Waste Manag. Assoc. 62 (10):1196–202. doi:10.1080/10962247.2012.700633.
  • Liang, Q., Y. Wang, F. Lin, M. Jiang, P. Li, and B. Huang. 2017. A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application. Anal. Methods 9 (24):3675–81. doi:10.1039/C7AY01069A.
  • Lillo-Ródenas, M. A., D. Cazorla-Amoros, and A. Linares-Solano. 2005. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43 (8):1758–67. doi:10.1016/j.carbon.2005.02.023.
  • Long, C., Y. Li, W. H. Yu, and A. M. Li. 2012. Removal of benzene and methyl ethyl ketone vapor: Comparison of hypercrosslinked polymeric adsorbent with activated carbon. J. Hazard. Mater. 203:251–56. doi:10.1016/j.jhazmat.2011.12.010.
  • Luo, L., D. Ramirez, M. J. Rood, G. Grevillot, K. J. Hay, and D. L. Thurston. 2006. Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies. Carbon 44 (13):2715–23. doi:10.1016/j.carbon.2006.04.007.
  • Mao, H. Y., D. G. Zhou, Z. Hashisho, S. G. Wang, H. Chen, H. Y. Wang, and M. J. Lashaki. 2015b. Microporous activated carbon from pinewood and wheat straw by microwave-assisted KOH treatment for the adsorption of toluene and acetone vapors. RSC Adv. 5 (45):36051–58. doi:10.1039/C5RA01320H.
  • Mao, H. Y., D. G. Zhou, Z. Hashisho, S. U. Wang, H. Chen, and H. Y. Wang. 2015a. Constant power and constant temperature microwave regeneration of toluene and acetone loaded on microporous activated carbon from agricultural residue. J. Ind. Eng. Chem. 21:516–25. doi:10.1016/j.jiec.2014.03.014.
  • Mosher, K., J. J. He, Y. Y. Liu, E. Rupp, and J. Wilcox. 2013. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 109:36–44. doi:10.1016/j.coal.2013.01.001.
  • Mudliar, S., B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandey, A. Juwarkar, and A. Vaidya. 2010. Bioreactors for treatment of VOCs and odours - A review. J. Environ. Manage 91 (5):1039–54. doi:10.1016/j.jenvman.2010.01.006.
  • Nguyen, C., and D. D. Do. 2001. The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 39 (9):1327–36. doi:10.1016/S0008-6223(00)00265-7.
  • Ouzzine, M., A. J. Romero-Anaya, M. A. Lillo-Ródenas, and A. Linares-Solano. 2019. Spherical activated carbons for the adsorption of a real multicomponent VOC mixture. Carbon 148:214–23. doi:10.1016/j.carbon.2019.03.075.
  • Ozturk, B., and D. Yilmaz. 2006. Absorptive removal of volatile organic compounds from flue gas streams. Process Saf. Environ. Prot. 84 (5):391–98. doi:10.1205/psep05003.
  • Pan, R. R., F. L. Fan, Y. Li, and X. J. Jin. 2016. Microwave regeneration of phenol-loaded activated carbons obtained from Arundo donax and waste fiberboard. RSC Adv. 6 (39):32960–66. doi:10.1039/C6RA01642A.
  • Pei, J., and J. S. S. Zhang. 2012. Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Build. Environ. 48:66–76. doi:10.1016/j.buildenv.2011.08.005.
  • Price, D. W., and P. S. Schmidt. 1998. VOC recovery through microwave regeneration of adsorbents: Comparative economic feasibility studies. J. Air Waste Manag. Assoc. 48 (12):1146–55. doi:10.1080/10473289.1998.10463759.
  • Qi, J. W., J. S. Li, Y. Li, X. F. Fang, X. Y. Sun, J. Y. Shen, W. Q. Han, and L. J. Wang. 2017. Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal. Chem. Eng. J. 307:989–98. doi:10.1016/j.cej.2016.09.022.
  • Qian, Q., C. Gong, Z. Zhang, and G. Yuan. 2015. Removal of VOCs by activated carbon microspheres derived from polymer: A comparative study. Adsorption 21 (4):333–41. doi:10.1007/s10450-015-9673-9.
  • Qiao, W. M., Y. Song, M. Huda, X. Zhang, S. H. Yoon, I. Mochida, O. Katou, H. Hayashi, and K. Kawamoto. 2005. Development of carbon precursor from bamboo tar. Carbon 43 (14):3021–25. doi:10.1016/j.carbon.2005.06.023.
  • Ramirez, D., S. Y. Qi, and M. J. Rood. 2005. Equilibrium and heat of adsorption for organic vapors and activated carbons. Environ. Sci. Technol. 39 (15):5864–71. doi:10.1021/es048144r.
  • Romero-Anaya, A. J., M. A. Lillo-Ródenas, and A. Linares-Solano. 2010. Spherical activated carbons for low concentration toluene adsorption. Carbon 48 (9):2625–33. doi:10.1016/j.carbon.2010.03.067.
  • Romero-Anaya, A. J., M. A. Lillo-Ródenas, and A. Linares-Solano. 2014. Activation of a spherical carbon for toluene adsorption at low concentration. Carbon 77:616–26. doi:10.1016/j.carbon.2014.05.066.
  • Romero-Anaya, A. J., M. A. Lillo-Ródenas, and A. Linares-Solano. 2015. Factors governing the adsorption of ethanol on spherical activated carbons. Carbon 83:240–49. doi:10.1016/j.carbon.2014.10.092.
  • Shah, I. K., P. Pre, and B. J. Alappat. 2014. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. J. Taiwan Inst. Chem. Eng. 45 (4):1733–38. doi:10.1016/j.jtice.2014.01.006.
  • Singh, A., and D. Lal. 2008. Microporous activated carbon spheres prepared from resole-type crosslinked phenolic beads by physical activation. J. Appl. Polym. Sci. 110 (5):3283–91. doi:10.1002/app.v110:5.
  • Singh, A., and D. Lal. 2010. Preparation and characterization of activated carbon spheres from polystyrene sulphonate beads by steam and carbon dioxide activation. J. Appl. Polym. Sci. 115 (4):2409–15. doi:10.1002/app.31340.
  • Song, Y., W. R. Qiao, S. H. Yoon, and I. Mochida. 2005. Toluene adsorption on various activated carbons with different pore structures. New Carbon Mater. 20 (4):294–98.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87 (9–10):1051–69. doi:10.1515/pac-2014-1117.
  • Wang, H., M. J. Lashaki, M. Fayaz, Z. Hashisho, J. H. Philips, J. E. Anderson, and M. Nichols. 2012. Adsorption and desorption of mixtures of organic vapors on beaded activated carbon. Environ. Sci. Technol. 46 (15):8341–50. doi:10.1021/es3013062.
  • Wang, Q., X. Liang, W. Qiao, C. Liu, X. Liu, L. Zhan, and L. Ling. 2009. Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene. Fuel Process Technol. 90 (3):381–87. doi:10.1016/j.fuproc.2008.10.008.
  • Yu, X. N., S. J. Liu, G. X. Lin, X. C. Zhu, S. Zhang, R. Y. Qu, C. H. Zheng, and X. Gao. 2018. Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption. RSC Adv. 8 (38):21541–50. doi:10.1039/C8RA03099E.
  • Zhang, C., W. Song, X. Zhang, R. Li, S. Zhao, and C. Fan. 2018. Synthesis, characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture. J. Mater. Sci. 53 (13):9429–48. doi:10.1007/s10853-018-2231-6.
  • Zhang, X. Y., B. Gao, A. E. Creamer, C. C. Cao, and Y. C. Li. 2017. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 338:102–23. doi:10.1016/j.jhazmat.2017.05.013.
  • Zheng, Y. N., Q. Z. Li, C. C. Yuan, Q. L. Tao, Y. Zhao, G. Y. Zhang, J. F. Liu, and G. Qi. 2018. Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel 230:172–84. doi:10.1016/j.fuel.2018.05.056.
  • Zhu, Z., A. Li, S. Zhong, F. Liu, and Q. Zhang. 2008. Preparation and characterization of polymer-based spherical activated carbons with tailored pore structure. J. Appl. Polym. Sci. 109 (3):1692–98. doi:10.1002/app.28304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.