1,182
Views
7
CrossRef citations to date
0
Altmetric
Technical Paper

Simultaneous removal of NOx, SO2, and Hg from flue gas in FGD absorber with oxidant injection (NaClO2)– full-scale investigation

, , , &
Pages 629-640 | Received 18 Dec 2019, Accepted 04 Mar 2020, Published online: 04 Jun 2020

References

  • American Society for Testing and Materials, USA. 2019. Standard test method for elemental, oxidized, particle-bound and total mercury in flue gas gened from coal-fired stationary sources (ASTM D6784). Accessed January 18, 2019. https://compass.astm.org/EDIT/html_annot.cgi?D6784+16.
  • Batakliev, T., V. Georgiev, M. Anachkov, S. Rakovsky, and G. E. Zaikov. 2014. Ozone decomposition. Interdiscip. Toxicol. 7 (2):47–59. doi:10.2478/intox-2014-0008.
  • Carpenter, A. M. 2013. Advances in multi-pollutant control; CCC/227; IEA clean coal centre, November; Accessed July 26, 2018. https://www.usea.org/sites/default/files/112013_Advances%20in%20multi-pollutant%20control_ccc227.pdf.
  • Chang, L., Y. Zhao, H. Li, C. Tian, Y. Zhang, and X. Yu. 2017. Effect of sulfide on divalent mercury reduction and re-emission in a simulated desulfurization aqueous solution. Fuel Process. Technol. 165:138–44. doi:10.1016/j.fuproc.2017.05.016.
  • Chen, C., S. Liu, Y. Gao, and Y. Liu. 2014. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry. Sci. World J. ID:581724. doi:10.1155/2014/581724.
  • Chirona, R. J., and B. Alshuter. 1999. Chemical aspects of NOx scrubbing. Pollut. Eng. 31:33–36.
  • Ding, J., Q. Zhong, and S. L. Zhang. 2014. Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SO2 removal: Effect of calcination temperature. J. Mol. Catal. A: Chem. 393:222–31. doi:10.1016/j.molcata.2014.06.018.
  • EU COMMISSION IMPLEMENTING DECISION 2017/1442 of 31 July 2017 establishing the Best Available Techniques (BAT) Conclusions for large combustion plants in accordance with Directive 2010/75/EU of the European Parliament and of the Council (L 212/1).
  • Frandsen, J. B. W., S. Kiil, and J. E. Johnsson. 2001. Optimisation of a wet FGD pilot plant using fine limestone and organic acids. Chem. Eng. Sci. 56:3275–87. doi:10.1016/S0009-2509(01)00010-0.
  • Glamser, J., M. Eikmeier, and H.-K. Petzel. 1989. Advanced concepts in FGD technology: The SHU process with cooling tower discharge. JAPCA 39 (9):1262–67. doi:10.1080/08940630.1989.10466618.
  • Głomba, M., A. Hałat, W. Kordylewski, and D. Łuszkiewicz. 2016. Research on products of simultaneous removal of SO2 and NOx from flue gas by ozonation and alkaline absorption. Environ. Prot. Eng. 42 (2):125–36. doi:10.5277/epe160208.
  • Hao, R., X. Wang, Y. Liang, Y. Lu, Y. Cai, X. Mao, B. Yuan, and Y. Zhao. 2017. Reactivity of NaClO2 and HA-Na in air pollutants removal: Active species identification and cooperative effect revelation. Chem. Eng. Jour. 330:1279–88. doi:10.1016/j.cej.2017.08.085.
  • Heidel, B., M. Hilber, and G. Scheffknecht. 2014. Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization. Appl. Energy. 114:485–91. doi:10.1016/j.apenergy.2013.09.059.
  • Heidel, B., and B. Klein. 2017. Reemission of elemental mercury and mercury halides in wet flue gas desulfurization. Int. J. Coal Geol. 170:28–34. doi:10.1016/j.coal.2016.09.003.
  • Hutson, N. D., R. Krzyżyńska, and R. K. Srivastava. 2008. Simultaneous removal of SO2, NOx and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Ind. Eng. Chem. Res. 47:5825–31. doi:10.1021/ie800339p.
  • Jędrusik, M., M. A. Gostomczyk, A. Świerczok, D. Łuszkiewicz, and M. Kobylańska. 2019. Mercury re-emission from adipic acid enhanced FGD absorber – Full scale investigations on ~ 400 MWe boiler (lignite) with oxidant injection to flue gas. Fuel 238:507–31. doi:10.1016/j.fuel.2018.10.131.
  • Koech, L., R. Everson, H. Neomagus, and H. Rutto. 2014. Dissolution kinetics of sorbents and effect of additives in wet flue gas desulfurization. Rev. Chem. Eng. 30 (6):553–65. doi:10.1515/revce-2014-0024.
  • Krzyżynska, R., and N. D. Hutson. 2012b. Effect of solution pH on SO2, NOx, and Hg removals from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber. J. Air Waste Manage. Assoc. 62:212–20. doi:10.1080/10473289.2011.642951.
  • Krzyżyńska, R., and N. D. Hutson. 2012a. The importance of the location of sodium chlorite application in multipollutant flue gas cleaning system. J. Air Waste Manage. Assoc. 62 (6):707–16. doi:10.1080/10962247.2012.668158.
  • Krzyżyńska, R., Y. Zhao, and N. D. Hutson. 2010. Absorption of NOx, SO2 and mercury in a simulated additive-enhanced wet flue gas desulphurization scrubber. Polish J. Of Environ. Stud. 19 (9):1255–62.
  • Kuropka, J. 2012. Technologies for purification of gases from sulphur dioxide and nitrogen oxides. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, (in Polish).
  • Lee, H. K., B. R. Deshwal, and K. S. Yoo. 2005. Simultaneous removal of SO2 and NO by sodium chlorite solution in wetted-wall column. Korean J. Chem. Eng. 22:208–13. doi:10.1007/BF02701486.
  • Littlejohn, D., T. Wang, and S. G. Chang. 1993. Oxidation of aqueous sulfite ion by nitrogen dioxide. Environ Sci. Technol. 27 (10):2162–67. doi:10.1021/es00047a024.
  • Łuszkiewicz, D. 2017. Removal of pollutants from the exhaust gas with ozone - characteristics of the product (dissertation in polish). Wroclaw University of Science and Technology. https://fbc.pionier.net.pl/details/oai:www.dbc.wroc.pl:42256
  • MacNeil, J. H., P. A. Berseth, G. Westwood, and W. C. Trogler. 1998. Aqueous catalytic disproportionation and oxidation of nitric oxide. Environ Sci. Technol. 32 (7):876–81. doi:10.1021/es970743t.
  • Omine, N., C. E. Romero, H. Kikkawa, S. Wu, and S. Eswaran. 2012. Study of elemental mercury re-emission in simulated wet scrubber. Fuel 91:93–101. doi:10.1016/j.fuel.2011.06.018.
  • Paiva, J. L., and G. C. Kachan. 2004. Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column. Chem. Eng. And Process. 43:941–48. doi:10.1016/j.cep.2003.08.005.
  • Park H-W, C. S., and D.-W. Park. 2015. Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with plasma electrostatic precipitator. J. Of Hazard. Mater. 285:117–26. doi:10.1016/j.jhazmat.2014.11.040.
  • Polish Norma: Air purity protection. 1993. Examination of the content of nitrogen and its compounds, PN93/Z-04009/06 (in Polish).
  • Sada, E., H. Kumazawa, Y. Yamanaka, I. Kudo, and T. Kondo. 1978. Absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide. J. Chem. Eng. Jpn. 11:276–82. doi:10.1252/jcej.11.276.
  • Shen, C. H., and T. Gary. 1998. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environ Sci. Technol. 32 (13):1994–2003. doi:10.1021/es970466q.
  • Siddiqi, M. A., J. Petersen, and K. Lucas. 2001. A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes. Ind. Eng. Chem. Res. 40 (9):2116–27. doi:10.1021/ie000815g.
  • Skalska, K., S. Ledakowicz, R. Louwe, and R. Szymczak. 2016. Nitrogen oxides pre-ozonation in flue gases from phosphate rock digestion. Chem. Eng. J. 318:181–88. doi:10.1016/j.cej.2016.06.048.
  • Srivastava, R. K., N. Hutson, B. Martin, F. Princiotta, and J. Staudt. 2006. Control of mercury emissions from coal-fired electric utility boilers. Environ. Sci. Technol. 40 (5):1385–93. doi:10.1021/es062639u.
  • Sun, Y., X. Hong, T. Zhu, X. Guo, and D. Xie. 2017. The chemical behaviors of nitrogen dioxide absorption in sulfite solution. Appl. Sci. 7:377. doi:10.3390/app7040377.
  • Tavoulareas, E. S., and W. Józewicz 2005. Multi pollutant emission control technology options for coal-fired power plants. EPA-600/R-05/034. Accessed July 26, 2018. https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryId=118703.
  • Turšič, J., I. Grgic´, and M. Bizjak. 2001. Influence of NO2 and dissolved iron on the S(IV) oxidation in synthetic aqueous solution. Atmos. Environ. 35 (1):97–104. doi:10.1016/S1352-2310(00)00283-1.
  • U.S. Environmental Protection Agency. 2018a. Mercury and Air Toxics Standards (MATS) for power plants. Accessed July 26, 2018. http://www.epa.gov/mats/.
  • U.S. Environmental Protection Agency. 2018b. Emission standards regulations. Accessed July 29, 2018. https://www.epa.gov/emission-standards-reference-guide/epa-emission-standards-regulations
  • Wang, Z., X. Zhang, Z. Zhou, W.-Y. Chen, J. Zhou, and K. Cen. 2012. Effect of additive agents on the simultaneous absorption of NO2 and SO2 in the calcium sulfite slurry. Energy & Fuels 26:5583−5589. doi:10.1021/ef3007504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.