673
Views
7
CrossRef citations to date
0
Altmetric
A special grouping of select papers presented at the international conference, “Sustainable technologies for industrial hazardous waste management and bioenergy production,” Chennai, India

Simultaneous pretreatment and saccharification process for fermentable sugars production from Casuarina equisetifolia biomass using transgenic Trichoderma atroviride

, , , , , & show all
Pages 1244-1251 | Received 31 Oct 2019, Accepted 18 Mar 2020, Published online: 07 Dec 2020

References

  • Balcázar-López, E., L. H. Méndez-Lorenzo, R. A. Batista-García, U. Esquivel-Naranjo, M. Ayala, V. V. Kumar, O. Savary, H. Cabana, A. Herrera-Estrella, and J. L. Folch-Mallol. 2016. Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS ONE 11:e0147997. doi:10.1371/journal.pone.0147997.
  • Bellido, C., S. Bolado, M. Coca, S. Lucas, G. González-Benito, and M. T. García-Cubero. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102:10868–74. doi:10.1016/j.biortech.2011.08.128.
  • Cázares-García, S. V., M. S. Vázquez-Garcidueñas, and G. Vázquez-Marrufo. 2013. Structural and phylogenetic analysis of laccases from Trichoderma: A bioinformatic approach. PLoS ONE 8:e55295. doi:10.1371/journal.pone.0055295.
  • Colussi, F., W. Garcia, F. R. Rosseto, B. L. S. de Mello, M. de Oliveira Neto, and I. Polikarpov. 2012. Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum. Eur. Biophys. J. 41:89–98. doi:10.1007/s00249-011-0762-8.
  • Conesa, C., L. Seguí, and P. Fito. 2018. Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste Biomass Valori. 9:1359–68. doi:10.1007/s12649-017-9887-z.
  • Coward‐Kelly, G., C. Aiello‐Mazzari, S. Kim, C. Granda, and M. Holtzapple. 2003. Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol. Bioeng. 82:745–49. doi:10.1002/bit.10620.
  • Deschatelets, L., and K. C. Ernest. 1986. A simple pentose assay for biomass conversion studies. Appl. Microbiol. Biotechnol. 24 (5):379–85. doi:10.1007/BF00294594.
  • Dhiman, S. S., A. David, N. Shrestha, G. R. Johnson, K. M. Benjamin, V. Gadhamshetty, and R. K. Sani. 2017. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria. Bioresour. Technol. 244:733–40. doi:10.1016/j.biortech.2017.07.102.
  • Ghorbani, F., M. Karimi, D. Biria, H. Kariminia, and A. Jeihanipour. 2015. Enhancement of fungal delignification of rice straw by Trichoderma viride sp. to improve its saccharification. Biochem. Eng. J. 101:77–84. doi:10.1016/j.bej.2015.05.005.
  • Ghose, T. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59:257–68. doi:10.1351/pac198759020257.
  • Harrison, M. D., Z. Zhang, K. Shand, I. M. O’Hara, W. O. Doherty, and J. L. Dale. 2013. Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Bioresour. Technol. 148:105–13. doi:10.1016/j.biortech.2013.08.099.
  • Kim, S.-K., D.-H. Park, S. H. Song, Y.-J. Wee, and G.-T. Jeong. 2013. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioproc. Biosyst. Eng. 36:659–66. doi:10.1007/s00449-013-0888-4.
  • Kumar, S., L. K. Gujjala, and R. Banerjee. 2017. Simultaneous pretreatment and saccharification of bamboo for biobutanol production. Ind. Crops Prod. 101:21–28. doi:10.1016/j.indcrop.2017.02.028.
  • Láinez, M., H. A. Ruiz, A. A. Castro-Luna, and S. Martínez-Hernández. 2018. Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass Bioenerg. 118:133–40. doi:10.1016/j.biombioe.2018.08.012.
  • Lenihan, P., A. Orozco, E. O’neill, M. Ahmad, D. Rooney, and G. Walker. 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156:395–403. doi:10.1016/j.cej.2009.10.061.
  • Liew, C., A. Husaini, H. Hussain, S. Muid, K. Liew, and H. Roslan. 2011. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World J. Microbiol. Biotechnol. 27:1457–68. doi:10.1007/s11274-010-0598-x.
  • Liu, G., and Y. Qu. 2018. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnol. Adv. 37:519–29. doi:10.1016/j.biotechadv.2018.12.004.
  • Novotný, Č., N. Dias, A. Kapanen, K. Malachová, M. Vándrovcová, M. Itävaara, and N. Lima. 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo-and anthraquinone dyes. Chemosphere 63:1436–42. doi:10.1016/j.chemosphere.2005.10.002.
  • Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346–56. doi:10.1016/0003-2697(77)90043-4.
  • Potumarthi, R., R. R. Baadhe, P. Nayak, and A. Jetty. 2013. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour. Tech. 128:113–17. doi:10.1016/j.biortech.2012.10.030.
  • Sahmetlioglu, E., H. Yürük, L. Toppare, I. Cianga, and Y. Yagci. 2006. Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly (vinyl alcohol) with pyrrole. React. Funct. Polym. 66 (3):365–71. doi:10.1016/j.reactfunctpolym.2005.08.009.
  • Saini, A., N. K. Aggarwal, and A. Yadav. 2017. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3 Biotech 7:12. doi:10.1007/s13205-017-0604-1.
  • Vishnu, D., G. Neeraj, R. Swaroopini, R. Shobana, V. V. Kumar, and H. Cabana. 2017. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 24:17993–8009. doi:10.1007/s11356-017-9318-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.