1,495
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

Quantification of gasoline-ethanol blend emissions effects

, , &
Pages 3-22 | Received 03 Dec 2019, Accepted 03 Apr 2020, Published online: 19 Nov 2020

References

  • Aikawa, K., T. Sakurai, and J. Jetter. 2010. Development of a predictive model for gasoline vehicle particulate matter emissions. SAE Int. J. Fuels Lubr. 3 (2):610–22. doi:10.4271/2010-01-2115.
  • American Petroleum Institute. 2010. Final report: Determination of the potential property ranges of mid-level ethanol blends.
  • Andersen, V., J. Anderson, T. Wallington, S. Mueller, and O. Nielsen. 2010. Vapor pressures of alcohol−gasoline blends. Energy Fuels 24 (6):3647–54. doi:10.1021/ef100254w.
  • Anderson, J., T. Leone, M. Shelby, T. Wallington, J. Bizub, M. Foster, M. Lynskey, and D. Polovna. 2012. Octane numbers of ethanol-gasoline blends: Measurements and novel estimation method from molar composition. SAE Technical Paper 2012-01-1274.
  • Bishop, G. A., K. Hoekman, and A. Broch. 2017. Evaluation of emissions benefits of federal reformulated gasoline versus conventional gasoline. CRC Report E-123-2, Coordinating Research Council, Alpharetta, GA.
  • Bolden, A. L., C. F. Kwiatkowski, and T. Colborn. 2015. New look at BTEX: Are ambient levels a problem? Environ. Sci. Technol. 49 (9):5261–76. doi:10.1021/es505316f.
  • Butler, A. D., R. A. Sobotowski, G. J. Hoffman, and P. Machiele. 2015. Influence of fuel PM index and ethanol content on particulate emissions from light-duty gasoline vehicles. SAE Technical Paper 2015-01-1072.
  • Chapman, E., M. Winston-Galant, P. Geng, R. Latigo, and A. Boehman. 2016. Alternative fuel property correlations to the Honda Particulate Matter Index (PMI). SAE Technical Paper 2016-01-2250.
  • Clark, N., T. Higgins, D. McKain, and T. Klein. 2019a. Effects of Ethanol Blends on Light-Duty Vehicle Emissions: A Critical Review. Future Fuel Strategies Report prepared for the Urban Air Initiative. Accessed November, 2019. http://futurefuelstrategies.com/wp-content/uploads/sites/7/2019/01/UAI_Final_Report_FIN.pdf.
  • Clark, N., T. Klein, T. Higgins, and D. McKain. 2019b. Emissions from low and mid level blends of anhydrous ethanol in gasoline. SAE Technical Paper 2019-01-0997.
  • Darlington, T., D. Kahlbaum, S. Van Hulzen, and R. Furey. 2016. Analysis of EPAct emission data using T70 as an additional predictor of PM emissions from tier 2 gasoline vehicles. SAE Technical Paper 2016-01-0996.
  • Durbin, T. D., J. W. Miller, T. Younglove, T. Huai, and K. Cocker. 2006. Effects of ethanol and volatility parameters on exhaust emissions. Report, CRC Project No E-67, Coordinating Research Council, Alpharetta, GA.
  • EIA. 2019. Energy information agency, new EPA ruling expands sale of 15% ethanol blended motor gasoline. Accessed August, 2019. https://www.eia.gov/todayinenergy/detail.php?id=40095.
  • EPA. 1998. Toxicological review of naphthalene (CAS No. 91-20-3) in support of summary information on the integrated risk information system (IRIS). August, 1998.
  • EPA. 2009. Provisional peer-reviewed toxicity values for n-Propylbenzene (CASRN 103-65-1). EPA/690/R-09/049F, 2-04-2009.
  • EPA. 2013a. Environmental Protection Agency, assessing the effect of five gasoline properties from light-duty vehicles certified to tier 2 standards: Analysis of data from EPAct phase 3 (EPAct/V2/E-89). Final Report, EPA 420-R-13-002.
  • EPA. 2013b. Assessing the effect of five gasoline properties from light-duty vehicles certified to tier 2 standards: Final report on program design and data collection. EPA 420-R-13-004.
  • EPA. 2017. Fuel trends report: Gasoline 2006-2016. EPA-420-R-17-005.
  • EPA. 2018. Environmental Protection Agency, MOVES and other mobile source emissions models. Accessed October, 2019. epa.gov.moves.
  • EPA. 2019. Environmental Protection Agency, MTBE Blue Ribbon Panel of the CAAAC. Accessed August, 2019. https://www.epa.gov/caaac/mtbe-blue-ribbon-panel-caaac.
  • Fishbein, L. 1984 December. An overview of environmental and toxicological aspects of aromatic hydrocarbons. I. Benzene. Sci. Total Environ. 40(1):189–218. doi: 10.1016/0048-9697(84)90351-6.
  • Fishbein, L. 1985a April. An overview of environmental and toxicological aspects of aromatic hydrocarbons II. Toluene. Sci. Total Environ. 42(3):267–88. doi: 10.1016/0048-9697(85)90062-2.
  • Fishbein, L. 1985b. An overview of environmental and toxicological aspects of aromatic hydrocarbons III. Xylene. Sci. Total Environ. 43 (1–2):165–83. doi:10.1016/0048-9697(85)90039-7.
  • Fishbein, L. 1985c. An overview of environmental and toxicological aspects of aromatic hydrocarbons IV. Ethylbenzene 44 (3):269–87.
  • Foong, T. M., K. J. Morganti, M. J. Brear, G. da Silva, Y. Yang, and F. L. Dryer. 2014. The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 115:727–39. doi:10.1016/j.fuel.2013.07.105.
  • Ghosh, P., K. J. Hickey, and S. B. Jaffe. 2006. Development of a detailed gasoline composition-based octane model. Ind. Eng. Chem. Res. 45 (1):337–45. doi:10.1021/ie050811h.
  • Gunst, R. 2013. Statistical analysis of the phase 3 emissions data collected in the EPAct/V2/E89 program. Report NREL/SR-5400-52484, National Renewable Energy Laboratory Subcontract.
  • Guthrie, J. 2015. Current requirements and California’s strategies for reducing greenhouse gas (GHG) emissions, MSTRS presentation. Accessed October, 2019. https://www.epa.gov/sites/production/files/2015-05/documents/050515mstrs_guthrie.pdf.
  • Hoekman, S., A. Leland, and G. Bishop. 2018. Diminishing benefits of federal reformulated gasoline (RFG) compared to conventional gasoline (CG). SAE Int. J. Fuels Lubr. 12 (1):5–28. doi:10.4271/04-12-01-0001.
  • Isenstadt, A., J. German, M. Dorobantu, D. Boggs, and T. Watson. 2016. Downsized, boosted gasoline engines. International council on clean transportation. Working Paper 2016-21. Accessed August, 2019. https://theicct.org/sites/default/files/publications/Downsized-boosted-gasoline-engines_working-paper_ICCT_27102016.pdf.
  • Jewitt, C., L. Gibbs, and B. Evans. 2005. Gasoline driveability index, ethanol content and cold-start/warm-up vehicle performance. SAE Technical Paper 2005-01-3864.
  • Jimenez, E., and J. Buckingham. 2014. Exhaust emissions of average fuel composition. CRC E-98/A-80 final report, Coordinating Research Council, Alpharetta, GA.
  • Kalghatgi, G., and R. Stone. 2017. Fuel requirements of spark ignition engines. Proc. Ins. Mech. Eng. Part D 232 (1):22–35.
  • Kar, K., T. Last, C. Haywood, and R. Raine. 2008. Measurement of vapor pressures and enthalpies of vaporization of gasoline and ethanol blends and their effects on mixture preparation in an SI engine. SAE Int. J. Fuels Lubr. 1 (1):132–44. doi:10.4271/2008-01-0317.
  • Karavalakis, G., D. Short, D. Vu, M. Villela, R. Russell, H. Jung, A. Asa-Awuku, and T. Durbin. 2014. Regulated emissions, air toxics, and particle emissions from SI-DI light-duty vehicles operating on different iso-butanol and ethanol blends. SAE Int. J. Fuels Lubr. 7 (1):183–99. doi:10.4271/2014-01-1451.
  • Knoll, K., B. West, W. Clark, R. Graves, J. Orban, S. Przesmitzki, and T. Theiss. 2007. Effects of intermediate ethanol blends on legacy vehicles and small non-road engines, report 1 – updated. Report NREL/TP-540-43543; ORNL/TM-2008/117, February.
  • Leone, T. G., J. E. Anderson, R. S. Davis, A. Iqbal, R. A. Reese, M. H. Shelby, and M. Studzinski. 2015. The effect of compression ratio, fuel octane rating, and ethanol content on spark-ignition engine efficiency. Environ. Sci. Technol. 49 (18):10778–89. doi:10.1021/acs.est.5b01420.
  • Maricq, M. M., J. J. Szente, and K. Jahr. 2012. The impact of ethanol fuel blends on PM emissions from a light-duty GDI vehicle. Aerosol Sci. Technol. 46 (5):576–83. doi:10.1080/02786826.2011.648780.
  • Martinez, S., S. Merola, and A. Irimescu. 2019. Flame front and burned gas characteristics for different split injection ratios and phasing in an optical GDI engine. Appl. Sci. 9:449. doi:10.3390/app9030449.
  • McKee, R. H., R. Tibaldi, M. D. Adenuga, J.-C. Carrillo, and A. Margary. 2018. Assessment of the potential human health risks from exposure to complex substances in accordance with REACH requirements. “White spirit” as a case study. Reg. Toxicol. Pharmacol. 92:439–57. doi:10.1016/j.yrtph.2017.10.015.
  • Morgan, P., I. Smith, V. Premnath, and S. Kroll. 2017. Evaluation and investigation of fuel effects on gaseous and particulate emissions on SIDI in-use vehicles. CRC Report E-94-2, Coordinating Research Council, Alpharetta, GA.
  • Morgan, P., P. Lobato, V. Premnath, S. Kroll, and K. Brunner. 2018 Impacts of splash-blending on particulate emissions for SIDI engines. CRC Report E-94-3, Coordinating Research Council, Alpharetta, GA.
  • Pumphrey, J., J. Brand, and W. Scheller. 2000 September. Vapour pressure measurements and predictions for alcohol–gasoline blends. Fuel 79(11):1405–11. doi:10.1016/S0016-2361(99)00284-7.
  • Ratcliff, M. A., J. Burton, P. Sindler, E. Christensen, F. Fouts, G. M. Chupka, and R. L. McCromick 2016. Knock resistance and fine particle emissions for several biomass-derived oxygenates in a direct-injection spark-ignition engine. SAE 2016-01-0705.
  • Sakai, S., and D. Rothamer. 2019. Impact of ethanol blending on particulate emissions from a spark-ignition direct-injection engine. Fuel 236:1548–58. doi:10.1016/j.fuel.2018.09.037.
  • Saliba, G., R. Saleh, Y. Zhao, A. Presto, A. Lambe, B. Frodin, S. Sardar, H. Maldonado, C. Maddox, A. May, et al. 2017. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) vehicle emissions: Emission certification standards, cold-start, secondary organic aerosol formation potential, and potential climate impacts. Environ. Sci. Technol. 51 (11):6542–52. doi:10.1021/acs.est.6b06509.
  • Schuchmann, B., and R. Crawford. 2019. Alternative oxygenate effects on emissions. CRC Report E-129, Coordinating Research Council, Alpharetta, GA, 2018.
  • Schulz, M., S. Clark, L. Honary, C. Conconi, and S. W. Dean. 2011. Vehicle emissions and fuel economy effects of 16 % butanol and various ethanol blended fuels (E10, E20, and E85). J. ASTM Int. 8 (2):103068. Paper ID JAI103068. doi:10.1520/JAI103068.
  • Short, D., D. Vua, V. Chena, C. Espinoza, T. Bertea, G. Karavalakis, T. Durbin, and A. Asa-Awuku. 2017. Understanding particles emitted from spray and wall-guided gasoline direct injection and flex fuel vehicles operating on ethanol and iso-butanol gasoline blends. Aerosol Sci. Technol. 51 (3):330–41. doi:10.1080/02786826.2016.1265080.
  • Sobotowski, R., A. Butler, and Z. Guerra. 2015. A pilot study of fuel impacts on PM emissions from light-duty gasoline vehicles. SAE Int. J. Fuels Lubr. 8 (1):214–33. doi:10.4271/2015-01-9071.
  • Storey, J. M., T. Barone, K. Norman, and S. Lewis. 2010. Ethanol blend effects on direct-injection spark-ignition gasoline vehicle particulate matter emissions. SAE Technical Paper 2010-01-2129.
  • Tamm, D. C., G. N. Devenish, D. R. Rinelt, and A. L. Kalt. 2018. Analysis of gasoline octane costs. Independent Studies and Analysis, U.S. Energy Information Administration.
  • U.S.C, 2013, 42 U.S.C. 85. 2013. Title 42: The public health and welfare; Ch. 85: Air pollution prevention and control, subchapter I: programs and Activities, Part A: Air quality emissions and limitations. Sec, 7412: Hazardous Air Pollutants.
  • Vertin, K., G. Glinsky, and A. Reek. 2012 Comparative emissions testing of vehicles aged on e0, e15, and e20 fuels. Report NREL/SR-5400-55778, National Renewable Energy Laboratory Subcontract.
  • Whitney, K. 2014. Effect of gasoline properties on exhaust emissions from Tier 2 light-duty vehicles - final Report: Phase 3 (Part of EPAct/V2/E-89). Report NREL/SR-5400-61098, National Renewable Energy Laboratory Subcontract.
  • Yang, J., P. Roth, H. Zhu, T. D. Durbin, and G. Karavalakis. 2019b. Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 2. Influence on particulate matter, black carbon, and nanoparticle emissions. Fuel 252:812–20. doi:10.1016/j.fuel.2019.04.144.
  • Yang, J., P. Roth, T. Durbin, and G. Karavalakis. 2019a. Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 1. Influence on regulated and gaseous toxic pollutants. Fuel 252:799–811. doi:10.1016/j.fuel.2019.04.143.
  • Zhang, S., and W. McMahon. 2012. Particulate emissions for LEV II light-duty gasoline direct injection vehicles. SAE Int. J. Fuels Lubr. 5 (2):637–46. doi:10.4271/2012-01-0442.
  • Zhu, R., J. Hu, X. Bao, L. He, Y. Lai, L. Zu, Y. Li, and S. Su. 2016. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures. Environ. Pollut. 216:223–34. doi:10.1016/j.envpol.2016.05.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.