1,100
Views
15
CrossRef citations to date
0
Altmetric
A special grouping of select papers presented at the international conference, “Sustainable technologies for industrial hazardous waste management and bioenergy production,” Chennai, India

Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin

, , , , , , & show all
Pages 1252-1259 | Received 22 Oct 2019, Accepted 17 Apr 2020, Published online: 07 Dec 2020

References

  • Ba, S., and V. V. Kumar. 2017. Recent developments in the use of tyrosinase and laccase in environmental applications. Crit. Rev. Biotechnol. 37:819–32. doi:10.1080/07388551.2016.1261081.
  • Balakshin, M. Y., D. Evtuguin, C. P. Neto, and A. Cavaco-Paulo. 2001. Polyoxometalates as mediators in the laccase catalyzed delignification. J. Mol. Catal. B: Enzym. 16:131–40. doi:10.1016/S1381-1177(01)00054-6.
  • Bilal, M., Y. Zhao, T. Rasheed, and H. M. Iqbal. 2018. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 120:2530–44. doi:10.1016/j.ijbiomac.2018.09.025.
  • Bourbonnais, R., M. Paice, B. Freiermuth, E. Bodie, and S. Borneman. 1997. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63:4627–32. doi:10.1128/AEM.63.12.4627-4632.1997.
  • Camarero, S., M. J. Martínez, and A. T. Martínez. 2014. Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuel Bioprod. Biorefin. 8:615–25. doi:10.1002/bbb.1467.
  • Christopher, L. P., B. Yao, and Y. Ji. 2014. Lignin biodegradation with laccase-mediator systems. Front. Energy Res. 2:12–20. doi:10.3389/fenrg.2014.00012.
  • Crestini, C., F. Melone, and R. Saladino. 2011. Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Bioorgan. Med. Chem. 19:5071–78. doi:10.1016/j.bmc.2011.05.058.
  • Falade, A. O., L. V. Mabinya, A. I. Okoh, and U. U. Nwodo. 2019. Agrowastes utilization by Raoultella ornithinolytica for optimal extracellular peroxidase activity. Biotechnol. Appl. Biochem. 66:60–67. doi:10.1002/bab.1696.
  • Gasser, C. A., G. Hommes, A. Schäffer, and P. F.-X. Corvini. 2012. Multi-catalysis reactions: New prospects and challenges of biotechnology to valorize lignin. Appl. Microbiol. Biotechnol. 95:1115–34. doi:10.1007/s00253-012-4178-x.
  • Hämäläinen, V., T. Grönroos, A. Suonpää, M. W. Heikkilä, B. Romein, P. Ihalainen, S. Malandra, and K. R. Birikh. 2018. Enzymatic processes to unlock the lignin value. Front. Bioeng. Biotechnol. 6:20–26. doi:10.3389/fbioe.2018.00020.
  • Ibarra, D., J. Romero, M. J. Martínez, A. T. Martínez, and S. Camarero. 2006. Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase-mediator. Enzyme Microb. Technol. 39:1319–27. doi:10.1016/j.enzmictec.2006.03.019.
  • Kamimura, N., S. Sakamoto, N. Mitsuda, E. Masai, and S. Kajita. 2019. Advances in microbial lignin degradation and its applications. Curr. Opin. Biotechnol. 56:179–86. doi:10.1016/j.copbio.2018.11.011.
  • Kim, Y.-J., and J. A. Nicell. 2006. Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A. Bioresour. Technol. 97:1431–42. doi:10.1016/j.biortech.2005.06.017.
  • Kumar, R., P. Sharma, and P. Mishra. 2012. A review on the vanillin derivatives showing various biological activities. Int. J. Pharmtech. Res. 4:266–79.
  • Kumar, V. V., S. Sivanesan, and H. Cabana. 2014. Magnetic cross-linked laccase aggregates—Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 487:830–39. doi:10.1016/j.scitotenv.2014.04.009.
  • Li, C., C. Chen, X. Wu, C.-W. Tsang, J. Mou, J. Yan, Y. Liu, and C. S. K. Lin. 2019. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. Bioresour. Technol. 291:121898. doi:10.1016/j.biortech.2019.121898.
  • Min, K., T. Yum, J. Kim, H. M. Woo, Y. Kim, B.-I. Sang, Y. J. Yoo, Y. H. Kim, and Y. Um. 2017. Perspectives for biocatalytic lignin utilization: Cleaving 4-O-5 and C α–C β bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase. Biotechnol. Biofuel. 10:212–21. doi:10.1186/s13068-017-0900-3.
  • Mizobutsi, G. P., F. L. Finger, R. A. Ribeiro, R. Puschmann, L. L. D. M. Neves, and W. F. D. Mota. 2010. Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp. Scientia Agricola. 67:213–17. doi:10.1590/S0103-90162010000200013.
  • Munk, L., A. K. Sitarz, D. C. Kalyani, J. D. Mikkelsen, and A. S. Meyer. 2015. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 33:13–24. doi:10.1016/j.biotechadv.2014.12.008.
  • Munoz, C., F. Guillen, A. Martinez, and M. Martinez. 1997. Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr. Microbiol. 34:1–5. doi:10.1007/s002849900134.
  • Nicodemus, A. 2009. Casuarina–A guide for cultivation. Coimbatore, India: Institute of Forest Genetics and Tree Breeding (Indian Council of Forestry Research and Education).
  • Saikia, K., A. K. kumar, K. Ramachandran, H. Sridharan, P. Bohra, N. Bharadwaj, A. Vyas, and V. K. Vaidyanathan. 2020. A comparative study on the chemo-enzymatic upgrading of renewable biomass to 5-Hydroxymethylfurfural. J. Air Waste Manage. (just-accepted). doi:10.1080/10962247.2020.1723739.
  • Senthilkumar, N., S. Murugesan, R. Sumathi, and D. Babu. 2015. Compositional analysis of lignocellulosic biomass from certain fast growing tree species in India. Der. Chemica. Sinica. 6:25–28.
  • Shin, S. K., Y. J. Ko, J. E. Hyeon, and S. O. Han. 2019. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. Bioresour. Technol. 291:121728. doi:10.1016/j.biortech.2019.121728.
  • Vishnu, D., G. Neeraj, R. Swaroopini, R. Shobana, V. V. Kumar, and H. Cabana. 2017. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 24:17993–8009. doi:10.1007/s11356-017-9318-5.
  • Wang, Y., S. Sun, F. Li, X. Cao, and R. Sun. 2018. Production of vanillin from lignin: The relationship between β-O-4 linkages and vanillin yield. Ind. Crops Prod. 116:116–21. doi:10.1016/j.indcrop.2018.02.043.
  • Watkins, D., M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, and S. Jeelani. 2015. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4:26–32. doi:10.1016/j.jmrt.2014.10.009.
  • Yang, Y., W.-Y. Song, H.-G. Hur, T.-Y. Kim, and S. Ghatge. 2019. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin. Int. J. Biol. Macromol. 124:200–08. doi:10.1016/j.ijbiomac.2018.11.144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.