428
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Assessing background particulate contamination in an historic building – surface lead loading and contamination

ORCID Icon
Pages 745-752 | Received 19 Feb 2020, Accepted 04 May 2020, Published online: 30 Jun 2020

References

  • Agresti, A. 2001. Exact inference for categorical data: Recent advances and continuing controversies. Stat. Med. 20:2709–22. doi:10.1002/sim.738.
  • Beauchamp, C., D. Ceballos, and B. King. 2017. Lessons learned from surface wipe sampling for lead in three workplaces. J. Occup. Environ. Hyg. 14 (8):609–17. doi:10.1080/15459624.2017.1309047.
  • Biau, D. J., B. M. Jolles, and R. Porcher. 2010. P value and the theory of hypothesis testing: An explanation for new researchers. Clin. Orthop. Relat. Res. 468:885–92. doi:10.1007/s11999-0091164-4.
  • California Environmental Protection Agency. 2003. Memorandum from S. Powell to J. P. Frank, Worker Health and Safety Branch. Why Worker Health and Safety Branch uses arithmetic means in exposure assessments, September 22.
  • Chernoff, H. 2003. A view of past present and future. Indian J. Stat. San Antonio Conf. Sel. Articles 64 (A2):183–94.
  • David, H. A. 2008. The beginnings of randomization tests. Am. Stat. 62:70–72. doi:10.1198/000313008X269576.
  • DiNocera, F., and F. Ferlazzo. 2000. Resampling approach to statistical inference: Bootstrapping from event-related potentials data. Behav. Res. Methods Instrum. Comput. 32 (1):111–19. doi:10.3758/BF03200793.
  • Dixon, S., J. Wilson, C. Kawecki, R. Green, J. Phoenix, W. Galke, S. Clark, and J. Breysse. 2008. Selecting a lead hazard control strategy on dust lead loading and housing condition: Methods and results. J. Occup. Environ. Hyg. 8:530–39. doi:10.1080/15459620802219799.
  • Dixon, S. L., J. W. Wilson, C. S. Clark, W. A. Galke, P. A. Succop, and M. Chen. 2005. The influence of common area lead hazards and lead hazard control on dust lead loadings in multiunit buildings. J. Occup. Environ. Hyg. 2:659–66. doi:10.1080/15459620500403737.
  • Ernst, M. D. 2004. Permutation methods: A basis for exact inference. Stat. Sci. 19:676–85. doi:10.1214/088342304000000396.
  • Fisher, R. A. [1971a] 2003. The principles of experimentation, illustrated by a psycho-social experiment. Chap. II in The design of experiments. 8th ed.,11–25. New York: Haffner Publishing. Reprinted in Statistical methods experimental design and scientific inference. New York: Oxford University Press.
  • Fisher, R. A. [1971b] 2003. Introduction. Chap.I in The design of experiments, 8th ed., 1–10. New York: Haffner Publishing. Reprinted in Statistical methods experimental design and scientific inference. New York: Oxford University Press.
  • Fisher, R. A. [1971c] 2003. The generalisation of null hypotheses. Fiducial probability. Chap. X in The design of experiments, 8th ed., 184–213. New York: Haffner Publishing. Reprinted in Statistical methods experimental design and scientific inference. New York: Oxford University Press.
  • Gliner, J. A., N. L. Leech, and G. A. Morgan. 2002. Problems with null hypothesis significance testing (NHST): What do the textbooks say? J. Exp. Educ. 71:83–92. doi:10.1080/00220970209602058.
  • Goodman, S. 2008. A dirty dozen: Twelve p-value misconceptions. Semin. Hematol. 45:135–40. doi:10.1053/j.seminhematol.2008.04.003.
  • Haggstrom, O. 2017. The need for nuance in the null hypothesis testing debate. Educ. Psychol. Meas. 77:616–30. doi:10.1177/0013164416668233.
  • Hubbard, R., and M. J. Bayarri. 2003. Confusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testing. Am. Stat. 57:171–82. doi:10.1198/0003130031856.
  • Hurlbert, S. H., and C. M. Lombardi. 2009. Final collapse of the Neyman-Pearson decision theoretic framework and rise of the neoFisherian. Ann. Zool. Fenici. 46:311–49. doi:10.5737/086.048.0501.
  • Johnson, D., D. Thompson, R. Clinkenbeard, and J. Redus. 2008. Professional judgment and interpretation of viable mold air sampling data. J. Occup. Environ. Hyg. 5:656–63. doi:10.1080/15459620802310796.
  • Kass, R. E. 2011. Statistical inference: The big picture. Stat. Sci. 26:1–9. doi:10.1214/10-STS337.
  • Lange, J. H. 2001. A suggested lead surface concentration standard for final clearance of floors in Commercial and industrial buildings. Indoor Built Environ. 10:48–51. doi:10.1177/1420326X010100010.
  • Lehmann, E. L. 1993. The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or two? J. Am. Stat. Assoc. 88:1242–49. doi:10.1080/01621459.1993.10476404.
  • Ludbrook, J. 1994. Advantages of permutation (randomization) tests in clinical and experimental pharmacology and physiology. Clin. Exp. Pharmacol. Physiol. 21:673–86. doi:10.1111/j.1440-1681.1994.tb02570.x.
  • Ludbrook, J., and H. Dudley. 1998. Why permutation tests are superior to t and F tests in biomedical Research. Am. Stat. 52:127–32.
  • Modarres, R., J. L. Gastwirth, and W. Ewens. 2005. A cautionary note on the use of non-parametric tests in the analysis of environmental data. Environmetrics 16:319–26. doi:10.1002/env.695.
  • Moran, J. L., and P. Solomon. 2002. Worrying about normality. Crit. Care Resuscitation 4:316–19.
  • Sanderson, W. T., S. Leonard, D. Ott, L. Fuortes, and W. Field. 2008. Beryllium surface levels in a Military Ammunition Plant. J. Occup. Environ. Hyg. 5:475–81. doi:10.1080/15459620802131408.
  • Spicer, R. C., and H. J. Gangloff. 2000. A probability model for evaluating contaminant data from an environmental event. J. Air Waste Manage. Assoc. 50:1637–46. doi:10.1080/10473289.2000.10464198.
  • Spicer, R. C., and H. J. Gangloff. 2003. Bioaerosol data distribution: Probability and implications for sampling in evaluating problematic buildings. Appl. Ind. Hyg. 18:584–90. doi:10.1080/10473220301411.
  • Spicer, R. C., and H. J. Gangloff. 2008. Verifying interpretive criteria for bioaerosol data using (bootstrap) Monte Carlo techniques. J. Occup. Environ. Hyg. 5:85–92. doi:10.1080/15459620701804717.
  • Spicer, R. C., and H. J. Gangloff. 2010. Differences in detection frequency as a bioaerosol data criterion for evaluating suspect fungal contamination. Build. Environ. 45:1304–11. doi:10.1016/j.buildenv.2009.11.012.
  • Spicer, R. C., and H. J. Gangloff. 2011. Implications of error rates associated with numerical criteria for airborne fungal data. Proceedings of Indoor Air 2011, the 12th International Conference on Indoor Air Quality and Climate, Austin, TX 1:398–404.
  • Spicer, R. C., and H. J. Gangloff. 2015. The building performance model for evaluating bioaerosol data from suspect indoor environments. Indoor Built Environ. 24:640–49. doi:10.1177/1420326X14535790.
  • Spicer, R. C., and H. J. Gangloff. 2016. Permutation/randomization-based inference for environmental data. Environ. Monit. Assess. 188:147. doi:10.1007/s10661-016-5090-0.
  • Sterne, J. A. C. 2002. Teaching hypothesis tests-time for a significant change? Stat. Med. 21:985–94. doi:10.1002/sim.1129.
  • Stewart-Oaten, A. 1995. Rules and judgments in statistics: Three examples. Ecology 76 (6):2001–09. doi:10.2307/1940736.
  • Szucs, D., and J. P. A. Ioannidis. 2017. When null hypothesis significance testing is unsuitable for research: A reassessment. Front. Hum. Neurosci. 11:390. doi:10.3389/inhum.2017.00390.
  • United States Department of Housing and Urban Development. 2012. Chap. 5 Risk Assessment in Guidelines for the evaluation and control of lead based paint hazards in housing. 2nd ed. Washington, DC: United States Department of Housing and Urban Development.
  • United States Environmental Protection Agency. 1992. Statistical methods for evaluating the attainment of cleanup standards. Volume 3: reference-based standards for soils and solid media. EPA 230-R-94-004. Washington, DC: United States Environmental Protection Agency.
  • United States Environmental Protection Agency. 1995. Final report sampling house dust for lead basic concepts and literature review. EPA 747-R-95-007. Washington, DC: United States Environmental Protection Agency.
  • United States Environmental Protection Agency. 2002. Guidance for comparing background and chemical concentrations in soil for CERCLA sites. EPA 540-R-01-003 OSWER 9285, 7–4. Washington, DC: United States Environmental Protection Agency.
  • Yates, F. 1990. Forward to statistical methods experimental design and scientific inference, vii– xxxii. New York: Oxford University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.