1,123
Views
3
CrossRef citations to date
0
Altmetric
Technical Paper

Potential interferences in photolytic nitrogen dioxide converters for ambient air monitoring: Evaluation of a prototype

ORCID Icon, , ORCID Icon, , ORCID Icon, , , , & show all
Pages 753-764 | Received 05 Mar 2020, Accepted 06 May 2020, Published online: 03 Aug 2020

References

  • Brown, S. S., W. P. Dubé, Y. J. Tham, Q. Zha, L. Xue, S. Poon, Z. Wang, D. R. Blake, W. Tsui, D. D. Parrish, et al. 2016. Nighttime chemistry at a high altitude site above Hong Kong. J. Geophys. Res.-Atmos. 121 (5):2457–75. doi:10.1002/2015JD024566.
  • Brown, S. S., and J. Stutz. 2012. Nighttime radical observations and chemistry. Chem. Soc. Rev. 41 (19):6405–47.
  • Burkholder, J. B., S. P. Sander, J. P. D. Abbatt, J. R. Barker, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, D. M. Wilmouth, and P. H. Wine. 2015. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 18. Pasadena: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology.
  • Clough, P. N., and B. A. Thrush. 1966. Mechanism of chemiluminescent reaction between ntiric oxide and ozone. Chem. Commun. (21):783–84. doi:10.1039/C19660000783
  • Dillon, T. J., and J. N. Crowley. 2018. Reactive quenching of electronically excited NO2* and NO3* by H2O as potential sources of atmospheric HOx radical. Atmos. Chem. Phys. 18 (19):14005–15. doi:10.5194/acp-18-14005-2018.
  • Dunlea, E. J., S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, et al. 2007. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 7 (10):2691–704. doi:10.5194/acp-7-2691-2007.
  • Fehsenfeld, F. C., R. R. Dickerson, G. Hübler, W. T. Luke, L. J. Nunnermacker, E. J. Williams, J. M. Roberts, J. G. Calvert, C. M. Curran, A. C. Delany, et al. 1987. A ground-based intercomparison of NO, NOx, and NOy measurement techniques. J. Geophys. Res.-Atmos. 92 (D12):14710–22. doi:10.1029/JD092iD12p14710.
  • Fehsenfeld, F. C., J. W. Drummond, U. K. Roychowdhury, P. J. Galvin, E. J. Williams, M. Buhr, P. Parrish, D. D. Hübler, G. Langford, A. O. Calvert, et al. 1990. Intercomparison of NO2 measurement techniques. J. Geophys. Res.-Atmos. 95 (D4):3579–97. doi:10.1029/JD095iD04p03579.
  • Fontijn, A., A. J. Sabadell, and R. J. Ronco. 1970. Homogeneous chemiluminescent measurement of nitric oxide with ozone. Implications for continuous selective monitoring of gaseous air pollutants. Anal. Chem. 42 (6):575–79. doi:10.1021/ac60288a034.
  • Ford, K. M., B. M. Campbell, P. B. Shepson, S. B. Bertman, R. E. Honrath, M. Peterson, and J. E. Dibb. 2002. Studies of Peroxyacetyl nitrate (PAN) and its interaction with the snowpack at Summit, Greenland. J. Geophys. Res. 107 (D10):4102. doi:10.1029/2001JD000547.
  • Frost, G. J., S. A. McKeen, M. Trainer, T. B. Ryerson, J. A. Neuman, J. M. Roberts, A. Swanson, J. S. Holloway, D. T. Sueper, T. Fortin, et al. 2006. Effects of changing power plant NOx emissions on ozone in the eastern United States: Proof of concept. J. Geophys. Res.-Atmos. 111 (D12):D12306. doi:10.1029/2005JD006354.
  • Fuchs, H., S. M. Ball, B. Bohn, T. Brauers, R. C. Cohen, H. P. Dorn, W. P. Dubé, J. L. Fry, R. Häseler, U. Heitmann, et al. 2010. Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmos. Meas. Tech. 3 (1):21–37. doi:10.5194/amt-3-21-2010.
  • Fuchs, H., W. P. Dubé, S. J. Cicioira, and S. S. Brown. 2008. Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy. Anal. Chem. 80 (15):6010–17. doi:10.1021/ac8007253.
  • Fuchs, H., W. P. Dubé, B. M. Lerner, N. L. Wagner, E. J. Williams, and S. S. Brown. 2009. A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy. Environm. Sci. Technol. 43 (20):7831–36. doi:10.1021/es902067h.
  • Gluck, S., C. Glenn, T. Logan, B. Vu, M. Walsh, and P. Williams. 2003. Evaluation of NOx flue gas analyzers for accuracy and their applicability for low-concentration measurements. J. Air Waste Manag. Assoc. 53 (6):749–58. doi:10.1080/10473289.2003.10466208.
  • Huisman, A. J., J. R. Hottle, K. L. Coens, J. P. DiGangi, M. M. Galloway, A. Kammrath, and F. N. Keutsch. 2008. Laser-induced phosphorescence for the in situ detection of glyoxal at part per trillion mixing ratios. Anal. Chem. 80 (15):5884–91. doi:10.1021/ac800407b.
  • Jahnke, J. A. 2000. Continuous emission monitoring. 2nd ed. New York: John Wiley & Sons.
  • Jeansonne, M. S., and J. P. Foley. 1991. Review of the exponentially modified Gaussia (EMG) function since 1983. J. Chromatogr. Sci. 29 (6):258–66. doi:10.1093/chromsci/29.6.258.
  • Jordan, N., and H. D. Osthoff. 2020. Quantification of nitrous acid (HONO) and nitrogen dioxide (NO2) in ambient air by broadband cavity-enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm. Atmos. Meas. Tech. 13 (1):273–85. doi:10.5194/amt-13-273-2020.
  • Kley, D., and M. McFarland. 1980. Chemiluminescence detector for NO and NO2. Atmos. Technol. 12:63–69.
  • Li, S., J. Matthews, and A. Sinha. 2008. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 319 (5870):1657–60. doi:10.1126/science.1151443.
  • Meng, Z., D. Dabdub, and J. H. Seinfeld. 1997. Chemical coupling between atmospheric ozone and particulate matter. Science 277 (5322):116–19. doi:10.1126/science.277.5322.116.
  • Odame-Ankrah, C. A. 2015. Improved detection instrument for nitrogen oxide species. Calgary: University of Calgary. http://hdl.handle.net/11023/2006.
  • Odame-Ankrah, C. A., and H. D. Osthoff. 2011. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2O5 with automated zeroing and calibration. Appl. Spectrosc. 65 (11):1260–68. doi:10.1366/11-06384.
  • Odame-Ankrah, C. A., and B. W. Rosentreter Photolytic converter, patent WO2017173552. WO2017/173552, 2017.
  • Osthoff, H. D., C. A. Odame-Ankrah, Y. M. Taha, T. W. Tokarek, C. L. Schiller, D. Haga, K. Jones, and R. Vingarzan. 2017. Low levels of nitryl chloride at ground level: Nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia. Atmos. Chem. Phys. 18 (9):6293–315. doi:10.5194/acp-18-6293-2018.
  • Paul, D., A. Furgeson, and H. D. Osthoff. 2009. Measurements of total peroxy and alkyl nitrate abundances in laboratory-generated gas samples by thermal dissociation cavity ring-down spectroscopy. Rev. Sci. Instrum. 80 (11):114101. doi:10.1063/1.3258204.
  • Paul, D., and H. D. Osthoff. 2010. Absolute measurements of total peroxy nitrate mixing ratios by thermal dissociation blue diode laser cavity ring-down spectroscopy. Anal. Chem. 82 (15):6695–703. doi:10.1021/ac101441z.
  • Penkett, S. A., S. Gilge, C. Plass-Duelmer, I. E. Galbally, N. Brough, J. W. Bottenheim, F. Flocke, H. Gerwig, J. Lee, M. Milton, et al. 2011. WMO/GAW expert workshop on global long-term measurements of nitrogen oxides and recommendations for GAW nitrogen oxides network, 195. Hohenpeissenberg: World Meteorological Organization.
  • Pollack, I., B. Lerner, and T. Ryerson. 2010. Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis - chemiluminescence. J. Atmos. Chem. 65 (2):111–25. doi:10.1007/s10874-011-9184-3.
  • Reed, C., C. A. Brumby, L. R. Crilley, L. J. Kramer, W. J. Bloss, P. W. Seakins, J. D. Lee, and L. J. Carpenter. 2016a. HONO measurement by differential photolysis. Atmos. Meas. Tech. 9 (6):2483–95. doi:10.5194/amt-9-2483-2016.
  • Reed, C., M. J. Evans, P. Di Carlo, J. D. Lee, and L. J. Carpenter. 2016b. Interferences in photolytic NO2 measurements: Explanation for an apparent missing oxidant? Atmos. Chem. Phys. 16 (7):4707–24. doi:10.5194/acp-16-4707-2016.
  • Ryerson, T. B., E. J. Williams, and F. C. Fehsenfeld. 2000. An efficient photolysis system for fast-response NO2 measurements. J. Geophys. Res. 105 (D21):26447–61. doi:10.1029/2000JD900389.
  • Sadanaga, Y., Y. Fukumori, T. Kobashi, M. Nagata, N. Takenaka, and H. Bandow. 2010. Development of a selective light-emitting diode photolytic NO2 converter for continuously measuring NO2 in the atmosphere. Anal. Chem. 82 (22):9234–39. doi:10.1021/ac101703z.
  • Steinbacher, M., C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordóñez, A. S. H. Prevot, and C. Hueglin. 2007. Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. J. Geophys. Res.-Atmos. 112 (D11):D11307. doi:10.1029/2006JD007971.
  • Stutz, J., B. Alicke, and A. Neftel. 2002. Nitrous acid formation in the urban atmosphere: Gradient measurements of NO2 and HONO over grass in Milan, Italy. J. Geophys. Res.-Atmos. 107 (D22):LOP 5-1-LOP 5–15. doi:10.1029/2001JD000390.
  • Syomin, D. A., and B. J. Finlayson-Pitts. 2003. HONO decomposition on borosilicate glass surfaces: Implications for environmental chamber studies and field experiments. Phys. Chem. Chem. Phys. 5 (23):5236–42. doi:10.1039/b309851f.
  • Taha, Y. M., C. A. Odame-Ankrah, and H. D. Osthoff. 2013. Real-time vapor detection of nitroaromatic explosives by catalytic thermal dissociation blue diode laser cavity ring-down spectroscopy. Chem. Phys. Lett. 582:15–20. doi:10.1016/j.cplett.2013.07.040.
  • Villena, G., I. Bejan, R. Kurtenbach, P. Wiesen, and J. Kleffmann. 2012. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber. Atmos. Meas. Tech. 5 (1):149–59. doi:10.5194/amt-5-149-2012.
  • Voigt, S., J. Orphal, and J. P. Burrows. 2002. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250–800 nm region measured by fourier-transform spectroscopy. J. Photochem. Photobiol. A-Chem. 149 (1–3):1–7. doi:10.1016/S1010-6030(01)00650-5.
  • Volkamer, R., L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune. 2005. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air. Geophys. Res. Lett. 32 (8):L08806. doi:10.1029/2005GL022616.
  • Wild, R. J., P. M. Edwards, W. P. Dube, K. Baumann, E. S. Edgerton, P. K. Quinn, J. M. Roberts, A. W. Rollins, P. R. Veres, C. Warneke, et al. 2014. A measurement of total reactive nitrogen, NOy, together with NO2, NO, and O3 via cavity ring-down spectroscopy. Environm. Sci. Technol. 48 (16):9609–15. doi:10.1021/es501896w.
  • Williams, E. J., K. Baumann, J. M. Roberts, S. B. Bertman, R. B. Norton, F. C. Fehsenfeld, S. R. Springston, L. J. Nunnermacker, L. Newman, K. Olszyna, et al. 1998. Intercomparison of ground-based NOy measurement techniques. J. Geophys. Res. 103 (D17):22261–80. doi:10.1029/98JD00074.
  • Winer, A. M., J. W. Peters, J. P. Smith, and J. N. Pitts. 1974. Response of commercial chemiluminescent NO-NO2 analyzers to other nitrogen-containing compounds. Environm. Sci. Technol. 8 (13):1118–21. doi:10.1021/es60098a004.
  • Wojtal, P., J. D. Halla, and R. McLaren. 2011. Pseudo steady states of HONO measured in the nocturnal marine boundary layer: A conceptual model for HONO formation on aqueous surfaces. Atmos. Chem. Phys. 11 (7):3243–61. doi:10.5194/acp-11-3243-2011.
  • Zhang, G., Y. J. Mu, L. X. Zhou, C. L. Zhang, Y. Y. Zhang, J. F. Liu, S. X. Fang, and B. Yao. 2015. Summertime distributions of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in Beijing: Understanding the sources and major sink of PAN. Atmos. Environm. 103:289–96. doi:10.1016/j.atmosenv.2014.12.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.